Skip to main content
Log in

Growth of the Pt/Cu Dendrites on Stepped Cu(111) Surface

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The formation of Pt/Cu clusters on a stepped Cu(111) surface has been theoretically investigated using the self-learning kinetic Monte Carlo method. It has been shown that by varying Pt/Cu cluster growth conditions, one can prepare different nanostructures, such as spatially extended and branching dendrites and fingers of different geometry. It has been found that the shape of clusters depends mainly on three parameters: temperature, platinum relative concentration, and the type of step on which the cluster grows. Dendrites grow under the following conditions: the temperature in the system must be no higher than 200 K, and the system must contain platinum atoms. Depending on the type of step, either dendrites extended normally to the step or branching dendrites arise. At room temperature, fingers grow on steps, the length of fingers also being dependent on the type of step. Different shapes of clusters on different steps arise from the anisotropic diffusion of atoms near the corners of clusters, which can be explained by taking into account energy barriers for atom hops over the Cu(111) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Ogura, K. Fukutani, M. Matsumoto, T. Okano, M. Okada, and T. Kawamura, Phys. Rev. B 73, 125442 (2006).

  2. N. N. Negulyaev, V. S. Stepanyuk, P. Bruno, L. Diekhöner, P. Wahl, and K. Kern, Phys. Rev. B 77, 125437 (2008).

  3. H. Brune, H. Roder, K. Bromann, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, and J. Norskov, Surf. Sci. 349, L115 (1996).

    Article  ADS  Google Scholar 

  4. H. Zhang, H. Wang, J. Cao, and Y. Ni, J. Alloys Compd. 698, 654 (2017).

    Article  Google Scholar 

  5. Md. H. Rashid, and T. K. Mandal, J. Phys. Chem. C 111, 16750 (2007).

  6. R. Ramkumar and M. M. Sundaram, New J. Chem. 40, 7456 (2016).

    Article  Google Scholar 

  7. E. Sibert, F. Ozanam, F. Maroun, R. J. Behm, and O. M. Magnussen, Surf. Sci. 572, 115 (2004).

    Article  ADS  Google Scholar 

  8. M. Wasniowska, W. Wulfhekel, M. Przybylski, and J. Kirschner, Phys. Rev. B 78, 035405 (2008).

  9. U. Kasberger and P. Jakob, Surf. Sci. 540, 76 (2003).

    Article  ADS  Google Scholar 

  10. A. Bach Aaen, E. Lægsgaard, A. V. Ruban, and I. Stensgaard, Surf. Sci. 408, 43 (1998).

    Article  ADS  Google Scholar 

  11. R. Q. Hwang, J. Schröder, C. Günther, and R. J. Behm, Phys. Rev. Lett. 67, 3279 (1991).

    Article  ADS  Google Scholar 

  12. H. Röder, K. Bromann, H. Brune, and K. Kern, Phys. Rev. Lett. 74, 3217 (1995).

    Article  ADS  Google Scholar 

  13. F. Buchner, STM Investigation of Molecular Architectures of Porphyrinoids on a Ag (111) Surface: Supramolecular Ordering, Electronic Properties and Reactivity (Springer, Berlin, 2010).

    Book  Google Scholar 

  14. A. Meyer, J. I. Flege, R. E. Rettew, S. D. Senanayake, T. Schmidt, F. M. Alamgir, and J. Falta, Phys. Rev. B 82, 085424 (2010).

  15. M. Parschau, D. Schlatterbeck, and K. Christmann, Surf. Sci. 376, 133 (1997).

    Article  ADS  Google Scholar 

  16. J. Lipton, M. E. Glicksman, and W. Kurz, Mater. Sci. Eng. 65, 57 (1984).

    Article  Google Scholar 

  17. M. X. Liu, K. Wang, D. Xia, and T. Jiang, J. Alloys Compd. 589, 431 (2014).

    Article  Google Scholar 

  18. T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  ADS  Google Scholar 

  19. T. A. Witten and L. M. Sander, Phys. Rev. B 27, 5686 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Yu. Loskutov and A. S. Mikhailov, Fundamentals of the Theory of Complex Systems (Inst. Komp’yut. Issled., Moscow, 2007) [in Russian].

    Google Scholar 

  21. S. A. Dokukin, S. V. Kolesnikov, and A. M. Saletsky, Surf. Sci. 689, 121464 (2019).

  22. E. Soy, Z. Liang, and M. Trenary, J. Phys. Chem. C 119, 24796 (2015).

    Article  Google Scholar 

  23. F. R. Lucci, T. J. Lawton, A. Pronschinske, and E. C. H. Sykes, J. Phys. Chem. C 118, 3015 (2014).

    Article  Google Scholar 

  24. S. A. Dokukin, S. V. Kolesnikov, A. M. Saletsky, and A. L. Klavsyuk, J. Alloys Compd. 763, 719 (2018).

    Article  Google Scholar 

  25. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).

    Article  ADS  Google Scholar 

  26. N. A. Levanov, V. S. Stepanyuk, W. Hergert, D. I. Bazhanov, P. H. Dederichs, A. Katsnelson, and C. Massobrio, Phys. Rev. B 61, 2230 (2000).

    Article  ADS  Google Scholar 

  27. S. A. Dokukin, S. V. Kolesnikov, A. M. Saletsky, and A. L. Klavsyuk, Surf. Sci. 692, 121515 (2020).

  28. S. V. Kolesnikov, JETP Lett. 99, 286 (2014).

    Article  ADS  Google Scholar 

  29. S. V. Kolesnikov, A. L. Klavsyuk, and A. M. Saletsky, J. Exp. Theor. Phys. 121, 616 (2015).

    Article  ADS  Google Scholar 

  30. S. A. Dokukin, S. V. Kolesnikov, and A. M. Saletsky, J. Exp. Theor. Phys. 131, 745 (2020).

    Article  ADS  Google Scholar 

  31. S. A. Dokukin, S. V. Kolesnikov, and A. M. Saletsky, J. Exp. Theor. Phys. 133, 360 (2021).

    Article  ADS  Google Scholar 

  32. S. V. Kolesnikov, A. M. Saletskii, S. A. Dokukin, and A. L. Klavsyuk, Math. Models Comput. Simul. 10, 564 (2018).

    Article  MathSciNet  Google Scholar 

  33. G. Henkelman and H. Jónsson, J. Chem. Phys. 113, 9978 (2000).

    Article  ADS  Google Scholar 

  34. B. Puchala, M. L. Falk, and K. Garikipati, J. Chem. Phys. 132, 134104 (2010).

  35. S. A. Dokukin, S. V. Kolesnikov, and A. M. Saletsky, Comput. Mater. Sci. 155, 209 (2018).

    Article  Google Scholar 

  36. S. A. Dokukin, S. V. Kolesnikov, and A. M. Saletsky, Mosc. Univ. Phys. Bull. 74, 385 (2019).

    Article  ADS  Google Scholar 

  37. U. Kürpick, Phys. Rev. B 64, 075418 (2001).

  38. U. Kürpick, Phys. Rev. B 66, 165431 (2002).

  39. V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, Lomonosov: Supercomputing at Moscow State University (Chapman Hall/CRC Comput. Sci., Boca Raton, FL, 2013).

  40. V. Voevodin, A. Antonov, D. Nikitenko, P. Shvets, S. Sobolev, I. Sidorov, K. Stefanov, V. Voevodin, and S. Zhumatiy, Supercomput. Front. Innov. 6, 4 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

When conducting this study, the authors used computational resources of the Research Computing Center at the Moscow State University [39, 40].

Funding

This study was financially supported by the Russian Science Foundation, grant no. 21-72-20034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kolesnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokukin, S.A., Kolesnikov, S.V. & Saletsky, A.M. Growth of the Pt/Cu Dendrites on Stepped Cu(111) Surface. J. Exp. Theor. Phys. 135, 671–675 (2022). https://doi.org/10.1134/S1063776122110024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122110024

Navigation