Skip to main content
Log in

Macroscopic Quantum Tunneling: From Quantum Vortices to Black Holes and Universe

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The paper has been prepared for the JETP issue, dedicated to the 95th birthday of E.I. Rashba, who stood at the origins of macroscopic quantum tunneling together with his colleagues from the Landau Institute S.V. Iordansky and A.M. Finkelshtein. They pave the way for studying macroscopic quantum tunneling in various systems. In this paper, macroscopic quantum tunneling approach is extended to cosmological objects such as a black hole and de Sitter Universe. In particular, this approach allowed to calculate the entropy of Reissner–Nordström (RN) black hole with two horizons and the corresponding temperature of the thermal Hawking radiation. Several different methods were used: the method of semiclassical tunneling for calculation of the Hawking temperature; the cotunneling mechanism—the coherent sequence of tunneling at two horizons, each determined by the corresponding Hawking temperature; the method of singular coordinate transformations for calculations of macroscopic quantum tunneling from the RN black hole to the RN white hole; the method of the adiabatic change of the fine structure constant for the adiabatic transformation from the RN black hole to the Schwarzschild black hole; etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. M. Lifshitz and Yu. Kagan, Sov. Phys. JETP 35, 206 (1972).

    ADS  Google Scholar 

  2. S. V. Iordanskii and A. M. Finkel’shtein, Sov. Phys. JETP 35, 215 (1972).

    ADS  Google Scholar 

  3. S. V. Iordanskii and E. I. Rashba, Sov. Phys. JETP 47, 975 (1978).

    ADS  Google Scholar 

  4. G. E. Volovik, JETP Lett. 15, 81 (1972).

    ADS  Google Scholar 

  5. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  6. A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Phys. Lett. B 59, 85 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. E. Volovik, Universe 6, 133 (2020).

    Article  ADS  Google Scholar 

  8. G. E. Volovik, gr-qc/9510001.

  9. C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).

    Article  ADS  Google Scholar 

  10. M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Srinivasan and T. Padmanabhan, Phys. Rev. D 60, 024007 (1999).

  12. G. E. Volovik, JETP Lett. 69, 705 (1999).

    Article  ADS  Google Scholar 

  13. E. T. Akhmedov, V. Akhmedova, and D. Singleton, Phys. Lett. B 642, 124 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. L. Vanzo, G. Acquaviva, and R. di Criscienzo, Class. Quantum Grav. 28, 183001 (2011).

  15. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, Rev. Mod. Phys. 93, 035002 (2021).

  16. J. D. Bekenstein, Lett. Nuovo Cim. 11, 467 (1974).

    Article  ADS  Google Scholar 

  17. A. A. Starobinsky, Phys. Lett. B 9, 99 (1980).

    Article  ADS  Google Scholar 

  18. J. D. Barrow, Phys. Rev. D 101, 023527 (2020).

  19. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  20. L. Landau, in Niels Bohr and the Development of Physics, Ed. by W. Pauli (McGraw-Hill, New York, 1955), p. 52.

    Google Scholar 

  21. K. Akama, Lect. Notes Phys. 176, 267 (1983).

  22. K. Akama, Y. Chikashige, T. Matsuki, and H. Terazawa, Prog. Theor. Phys. 60, 868 (1978).

    Article  ADS  Google Scholar 

  23. H. Terazawa, in Proceedings of 22nd International Workshop on the Fundamental Problems of High Energy Physics and Field Theory, KEK Preprint 99-46 (1999).

  24. H. Terazawa, Y. Chikashige, K. Akama, and T. Matsuki, Phys. Rev. D 15, 1181 (1977).

    Article  ADS  Google Scholar 

  25. H. Terazawa, Phys. Lett. B 101, 43 (1981).

    Article  ADS  Google Scholar 

  26. F. R. Klinkhamer and G. E. Volovik, JETP Lett. 81, 551 (2005).

    Article  ADS  Google Scholar 

  27. P. Pronin and I. Kulikov, Pramana 28, 355 (1987).

    Article  ADS  Google Scholar 

  28. F. R. Klinkhamer and G. E. Volovik, JETP Lett. 88, 289 (2008).

    Article  ADS  Google Scholar 

  29. G. Gibbons, R. Kallosh, and B. Kol, Phys. Rev. Lett. 77, 4992 (1996).

    Article  ADS  Google Scholar 

  30. G. T. Horowitz and A. Strominger, Phys. Rev. Lett. 77, 2368 (1996).

    Article  ADS  Google Scholar 

  31. A. Barvinsky, S. Das, and G. Kunstatter, Phys. Lett. B 517, 415 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Barvinsky, S. Das, and G. Kunstatter, Found. Phys. 32, 1851 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Ansorg and J. Hennig, Class. Quantum Grav. 25, 22 (2008).

    Google Scholar 

  34. M. Visser, J. High Energ. Phys. 2012, 23 (2012).

    Article  Google Scholar 

  35. R. Tharanath and V. C. Kuriakose, Mod. Phys. Lett. A 28, 1350003 (2013).

  36. C. Corda, Ann. Phys. 353, 71 (2015).

    Article  ADS  Google Scholar 

  37. J. D. Bekenstein, in Proceedings of the 8th Marcel Grossmann Meeting, Ed. by T. Piran and R. Ruffini (World Scientific, Singapore, 1999), p. 92.

  38. S. Carlip, Int. J. Mod. Phys. D 23, 1430023 (2014).

  39. F. R. Klinkhamer and G. E. Volovik, JETP Lett. 105, 74 (2017).

    Article  ADS  Google Scholar 

  40. F. R. Klinkhamer, O. Santillan, G. E. Volovik, and A. Zhou, Physics 1, 321 (2019).

    Article  ADS  Google Scholar 

  41. B. R. Majhi and E. C. Vagenas, Phys. Lett. B 701, 623 (2011).

    Article  ADS  Google Scholar 

  42. E. Bianchi, M. Christodoulou, F. D’Ambrosio, H. M. Haggard, and C. Rovelli, Class. Quantum Grav. 35, 225003 (2018).

  43. C. Barcelo, R. Carballo-Rubio, and L. J. Garay, Int. J. Mod. Phys. D 23, 1442022 (2014).

  44. C. Barcelo, R. Carballo-Rubio, and L. J. Garay, Class. Quantum Grav. 34, 105007 (2017).

  45. P. Martin-Dussaud and C. Rovelli, Class. Quantum Grav. 36, 245002 (2019).

  46. C. Rovelli, Physics 11, 127 (2018).

    Article  Google Scholar 

  47. J. B. Achour, S. Brahma, and J. P. Uzan, J. Cosmol. Astropart. Phys., No. 03, 041 (2020).

  48. J. B. Achour and J. P. Uzan, Phys. Rev. D 102, 124041 (2020).

  49. J. B. Achour, S. Brahma, S. Mukohyama, and J. P. Uzan, J. Cosmol. Astropart. Phys., No. 09, 020 (2020).

  50. N. Bodendorfer, F. M. Mele, and J. Münch, Class. Quantum Grav. 38, 095002 (2021).

  51. F. D’Ambrosio, M. Christodoulou, P. Martin-Dussaud, C. Rovelli, and F. Soltani, Phys. Rev. D 103, 106014 (2021).

  52. G. E. Volovik, JETP Lett. 90, 1 (2009).

    Article  ADS  Google Scholar 

  53. P. Painlevé, C. R. Acad. Sci. (Paris) 173, 677 (1921).

    Google Scholar 

  54. A. Gullstrand, Arkiv. Mat. Astron. Fys. 16, 1 (1922).

    Google Scholar 

  55. W. Unruh, Phys. Rev. Lett. 46, 1351 (1981).

    Article  ADS  Google Scholar 

  56. G. E. Volovik, JETP Lett. 104, 645 (2016).

    Article  ADS  Google Scholar 

  57. G. E. Volovik and Kuang Zhang, J. Low Temp. Phys. 189, 276 (2017).

    Article  ADS  Google Scholar 

  58. M. Zubkov, Universe 4, 135 (2018).

    Article  ADS  Google Scholar 

  59. Y. Kedem, E. J. Bergholtz, and F. Wilczek, Phys. Rev. Res 2, 043285 (2020).

  60. D. Sabsovich, P. Wunderlich, V. Fleurov, D. I. Pikulin, R. Ilan, and T. Meng, Phys. Rev. Res. 4, 013055 (2022).

  61. S. Massar and R. Parentani, Phys. Rev. Lett. 78, 3810 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  62. E. Keski-Vakkuri and P. Kraus, Nucl. Phys. B 491, 249 (1997).

    Article  ADS  Google Scholar 

  63. V. A. Berezin, A. M. Boyarskyy, and A. Yu. Neronov, Grav. Cosmol. 5, 16 (1999).

    ADS  Google Scholar 

  64. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980)

  65. M. V. Feigel’man and A. S. Ioselevich, JETP Lett. 81, 277 (2005).

    Article  ADS  Google Scholar 

  66. L. I. Glazman and M. Pustilnik, in Nanophysics: Coherence and Transport, Ed. by H. Bouchiat et al. (Elsevier, Amsterdam, 2005), p. 427; arXiv: cond-mat/0501007.

  67. S. W. Hawking and G. T. Horowitz, Phys. Rev. 51, 4302 (1995).

    ADS  MathSciNet  Google Scholar 

  68. Hyeyoun Chung, Phys. Rev. D 86, 064036 (2012).

  69. E. Keski-Vakkuri and P. Kraus, Nucl. Phys. B 491, 249 (1997).

    Article  ADS  Google Scholar 

  70. P. Kraus and F. Wilczek, Nucl. Phys. B 433, 403 (1995).

    Article  ADS  Google Scholar 

  71. E. B. Sonin, Sov. Phys. JETP 37, 494 (1973).

    ADS  Google Scholar 

  72. B. McInnes, J. High Energy Phys. 2021, 155 (2021).

    Article  ADS  Google Scholar 

  73. M. Cvetic, G. W. Gibbons, H. Lü, and C. N. Pope, Phys. Rev. D 98, 106015 (2018).

  74. M. Baldovin, S. Iubini, R. Livi, and A. Vulpiani, Phys. Rep. 923, 1 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  75. P. J. Hakonen and R. T. Vuorinen, J. Low Temp. Phys. 89, 17 (1992).

    Article  Google Scholar 

  76. G. E. Volovik, JETP Lett. 109, 8 (2019).

    Article  ADS  Google Scholar 

  77. G. E. Volovik, JETP Lett. 109, 682 (2019).

    Article  ADS  Google Scholar 

  78. A. D. Sakharov, Sov. Phys. JETP 52, 349 (1980).

    ADS  Google Scholar 

  79. M. Christodoulou, A. Riello, and C. Rovelli, Int. J. Mod. Phys. D 21, 1242014 (2012).

  80. L. Boyle, K. Finn, and N. Turok, Phys. Rev. Lett. 121, 251301 (2018).

  81. L. Boyle, K. Finn, and N. Turok, Ann. Phys. 438, 168767 (2022).

  82. L. Boyle and N. Turok, arXiv: 2109.06204.

  83. G. E. Volovik, JETP Lett. 113, 602 (2021).

    Article  ADS  Google Scholar 

  84. T. Jacobson, arXiv: gr-qc/9404039.

  85. G. E. Volovik, Mod. Phys. Lett. A 36, 2150117 (2021).

  86. P. Hajicek, Nucl. Phys. B 603, 555 (2001).

    Article  ADS  Google Scholar 

  87. P. Hajicek and C. Kiefer, Int. J. Mod. Phys. D 10, 775 (2001).

    Article  ADS  Google Scholar 

  88. C. Kiefer and T. Schmitz, Phys. Rev. D 99, 126010 (2019).

  89. G. G. L. Nashed, W. El Hanafy, S. D. Odintsov, and V. K. Oikonomou, Int. J. Mod. Phys. D 29, 1750154 (2020).

  90. S. Bahamonde, S. D. Odintsov, V. K. Oikonomou, and P. V. Tretyakov, Phys. Lett. B 766, 225 (2017).

    Article  ADS  Google Scholar 

  91. M. Cvetic, S.Nojiri and S. D. Odintsov, Nucl. Phys. B 628, 295 (2002).

    Article  ADS  Google Scholar 

  92. C. Rovelli, arXiv: 2003.06687.

  93. S. W. Hawking, arXiv: 1509.01147.

  94. R. Penrose, in Battelle Rencontres, 1967 Lectures in Mathematics and Physics, Ed. by C. M. DeWitt and J. A. Wheeler (Benjamin, New York, 1968), p. 121.

    Google Scholar 

  95. J. M. McNamara, Proc. R. Soc. A 358, 499 (1978).

    ADS  Google Scholar 

  96. R. A. Matzner, N. Zamorano, and V. D. Sandberg, Phys. Rev. D 19, 2821 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  97. Y. Gürsel, I. D. Novikov, V. D. Sandberg, and A. A. Starobinsky, Phys. Rev. D 20, 1260 (1979).

  98. E. Poisson and W. Israel, Phys. Rev. D 41, 1796 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  99. S. Hod and T. Piran, Phys. Rev. Lett. 81, 1554 (1998).

    Article  ADS  Google Scholar 

  100. L. M. Burko and A. Ori, Phys. Rev. D 57, 7084 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  101. P. M. Chesler, R. Narayan, and E. Curiel, Class. Quantum Grav. 37, 025009 (2020).

  102. Yun He, Meng-Sen Ma, and Ren Zhao, Nucl. Phys. B 930, 513 (2018).

    Article  ADS  Google Scholar 

  103. Yubo Ma, Yang Zhang, Lichun Zhang, Liang Wu, Ying Gao, Shuo Cao, and Yu Pan, Eur. Phys. J. C 81, 42 (2021).

    Article  ADS  Google Scholar 

  104. S. Nojiri, S. D. Odintsov, and V. Faraoni, Phys. Rev. D 104, 084030 (2021).

  105. G. Jannes, JETP Lett. 94, 18 (2011).

    Article  ADS  Google Scholar 

  106. G. E. Volovik, Mod. Phys. Lett. A 36, 2150177 (2021).

  107. V. Faraoni and G. Vachon, Eur. Phys. J. C 80, 771 (2020).

    Article  ADS  Google Scholar 

  108. R. A. Hennigar, Kam To Billy Chan, L. Newhook, and I. Booth, Phys. Rev. D 105, 044024 (2022).

  109. G. E. Volovik, Found. Phys. 33, 349 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  110. A. J. S. Hamilton and J. P. Lisle, Am. J. Phys. 76, 519 (2008).

    Article  ADS  Google Scholar 

  111. M. Lewkowicz and M. A. Zubkov, Symmetry 11, 1294 (2019).

    Article  ADS  Google Scholar 

  112. J. Mäkelä, P. Repo, M. Luomajoki, and J. Piilonen, Phys. Rev. D 64, 024018 (2001).

  113. S. Hod, arXiv: 2102.05519.

  114. R. Penrose, Nuovo Cim. 1, 252 (1969).

    Google Scholar 

  115. Zhongxu Zhai and Wenbiao Liu, Astrophys. Space Sci. 325, 63 (2010).

    Article  ADS  Google Scholar 

  116. H. F. Li, M. S. Ma, and Y. Q. Ma, Mod. Phys. Lett. A 32, 1750017 (2017).

  117. R. Nakarachinda, E. Hirunsirisawat, L. Tannukij, and P. Wongjun, Phys. Rev. D 104, 064003 (2021).

  118. S. Nojiri and S. D. Odintsov, Phys. Rev. D 96, 104008 (2017).

  119. S. I. Kruglov, Mod. Phys. Lett. A 35, 2050291 (2020).

  120. Z. Amirabi and S. H. Mazharimousavi, Eur. Phys. J. C 81, 207 (2021).

    Article  ADS  Google Scholar 

  121. M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  122. C. Doran, Phys. Rev. D 61, 067503 (2000).

  123. J. Baines, T. Berry, A. Simpson, and M. Visser, Universe 7, 105 (2021).

    Article  ADS  Google Scholar 

  124. S. Shankaranarayanan, Phys. Rev. D 67, 084026 (2003).

  125. C. Singha, Gen. Relat. Grav. 54, 38 (2022).

    Article  ADS  Google Scholar 

  126. S. Azarnia and S. Sedigheh Hashemi, arXiv: 2111.08984.

  127. F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78, 063528 (2008).

  128. F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 105, 084066 (2022).

  129. S. W. Hawking, Phys. Lett. B 134, 403 (1984).

    Article  ADS  Google Scholar 

  130. D. Diakonov, arXiv:1109.0091.

  131. G. E. Volovik, J. Low Temp. Phys. (2022, in press); arXiv: 2111.07817.

  132. F. R. Klinkhamer, M. Savelainen, and G. E. Volovik, J. Exp. Theor. Phys. 125, 268 (2017).

    Article  ADS  Google Scholar 

  133. G. E. Volovik, JETP Lett. 90, 1 (2009).

    Article  ADS  Google Scholar 

  134. J. Bros, H. Epstein, and U. Moschella, J. Cosmol. Astropart. Phys. 0802, 003 (2008).

  135. J. Bros, H. Epstein, M. Gaudin, U. Moschella, and V. Pasquier, Commun. Math. Phys. 295, 261 (2010).

    Article  ADS  Google Scholar 

  136. D. P. Jatkar, L. Leblond and A. Rajaraman, Phys. Rev. D 85, 024047 (2012).

  137. N. Arkani-Hamed and J. Maldacena, arXiv: 1503.08043.

  138. G. E. Volovik, arXiv: 2205.06585 [gr-qc].

  139. G. E. Volovik, arXiv: 2007.05988.

  140. D. Podolskiy, arXiv: 1801.03012 [gr-qc].

  141. T. Padmanabhan, Class. Quantum Grav. 19, 5387 (2002).

    Article  ADS  Google Scholar 

  142. T. Markkanen, Eur. Phys. J. C 78, 97 (2018).

    Article  ADS  Google Scholar 

  143. G. Chapline, E. Hohlfeld, R. B. Laughlin, and D. I. Santiago, Int. J. Mod. Phys. A 18, 3587 (2003).

    Article  ADS  Google Scholar 

  144. I. Dymnikova, Universe 6, 101 (2020).

    Article  ADS  Google Scholar 

  145. G. E. Volovik, JETP Lett. 114, 236 (2021).

    Article  ADS  Google Scholar 

  146. S. Hod, Phys. Rev. D 75, 064013 (2007).

  147. G. Carullo, D. Laghi, J. Veitch, and W. del Pozzo, Phys. Rev. Lett. 126, 161102 (2021).

  148. P. Gibbs, arXiv: gr-qc/9803014.

  149. A. Retter and S. Heller, New Astron. 17, 73 (2012).

    Article  ADS  Google Scholar 

  150. T. Padmanabhan, Phys. Rep. 380, 235 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  151. Jinn-Ouk Gong and Min-Seok Seo, J. Cosmol. Astropart. Phys., No. 10, 042 (2021).

  152. L. Berezhiani, G. Dvali, and O. Sakhelashvili, Phys. Rev. D 105, 025022 (2022).

  153. A. Yu. Kamenshchik, A. A. Starobinsky, and T. Vardanyan, Eur. Phys. J. C 82, 345 (2022).

    Article  ADS  Google Scholar 

  154. Ya. B. Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252 (1977).

    ADS  Google Scholar 

  155. A. A. Starobinskii, JETP Lett. 30, 682 (1979).

    ADS  Google Scholar 

  156. A. A. Starobinskii, JETP Lett. 37, 66 (1983).

    ADS  Google Scholar 

  157. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357 (1994).

    Article  ADS  Google Scholar 

  158. A. M. Polyakov, Nucl. Phys. B 797, 199 (2008).

    Article  ADS  Google Scholar 

  159. A. M. Polyakov, arXiv: 1209.4135 [hep-th].

  160. E. T. Akhmedov, Int. J. Mod. Phys. 23, 1430001 (2014).

  161. E. Palti, Fortschr. Phys. 67, 1900037 (2019).

  162. A. D. Dolgov, Phys. Rev. D 55, 5881 (1997).

    Article  ADS  Google Scholar 

  163. V. Emelyanov and F. R. Klinkhamer, Phys. Rev. D 86, 027302 (2012).

  164. F. R. Klinkhamer, O. Santillan, G. E. Volovik, and A. Zhou, Physics 1, 321 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement no. 694248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Ethics declarations

CONFLICT OF INTEREST

The author declares that he has no conflicts of interest.

ADDITIONAL INFORMATION

This article was prepared for the special issue of Journal of Experimental and Theoretical Physics dedicated to the 95th birthday of Professor E.I. Rashba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volovik, G.E. Macroscopic Quantum Tunneling: From Quantum Vortices to Black Holes and Universe. J. Exp. Theor. Phys. 135, 388–408 (2022). https://doi.org/10.1134/S1063776122100120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122100120

Navigation