Skip to main content
Log in

Lifshitz Transitions, Type-II Dirac and Weyl Fermions, Event Horizon and All That

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The type-II Weyl and type-II Dirac points emerge in semimetals and also in relativistic systems. In particular, the type-II Weyl fermions may emerge behind the event horizon of black holes. In this case the horizon with Painlevé–Gullstrand metric serves as the surface of the Lifshitz transition. This relativistic analogy allows us to simulate the black hole horizon and Hawking radiation using the fermionic superfluid with supercritical velocity, and the Dirac and Weyl semimetals with the interface separating the type-I and type-II states. The difference between such type of the artificial event horizon and that which arises in acoustic metric is discussed. At the Lifshitz transition between type-I and type-II fermions the Dirac lines may also emerge, which are supported by the combined action of topology and symmetry. The type-II Weyl and Dirac points also emerge as the intermediate states of the topological Lifshitz transitions. Different configurations of the Fermi surfaces, involved in such Lifshitz transition, are discussed. In one case the type-II Weyl point connects the Fermi pockets and the Lifshitz transition corresponds to the transfer of the Berry flux between the Fermi pockets. In the other case the type-II Weyl point connects the outer and inner Fermi surfaces. At the Lifshitz transition the Weyl point is released from both Fermi surfaces. They loose their Berry flux, which guarantees the global stability, and without the topological support the inner surface disappears after shrinking to a point at the second Lifshitz transition. These examples reveal the complexity and universality of topological Lifshitz transitions, which originate from the ubiquitous interplay of a variety of topological characters of the momentum-space manifolds. For the interacting electrons, the Lifshitz transitions may lead to the formation of the dispersionless (flat) band with zero energy and singular density of states, which opens the route to room-temperature superconductivity. Originally, the idea of the enhancement of \(T_\mathrm{c}\) due to flat band has been put forward by the nuclear physics community, and this also demonstrates the close connections between different areas of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Weyl, Elektron und Gravitation. I. Z. Phys. 56, 330–352 (1929)

    Article  ADS  MATH  Google Scholar 

  2. H.B. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice. I—Proof by homotopy theory. Nucl. Phys. B 185, 20 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  3. H.B. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice. II—Intuitive homotopy proof. Nucl. Phys. B 193, 173 (1981)

    Article  ADS  Google Scholar 

  4. G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

  5. J. von Neumann, E. Wigner, Über das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z. 30, 467 (1929)

    MATH  Google Scholar 

  6. S.P. Novikov, Magnetic Bloch functions and vector bundles. Typical dispersion laws and their quantum numbers. Sov. Math., Dokl. 23, 298–303 (1981)

    MATH  Google Scholar 

  7. B. Simon, Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. G.E. Volovik, Zeros in the fermion spectrum in superfluid systems as diabolical points. JETP Lett. 46, 98–102 (1987)

    ADS  Google Scholar 

  9. T.D.C. Bevan, A.J. Manninen, J.B. Cook, J.R. Hook, H.E. Hall, T. Vachaspati, G.E. Volovik, Momentum creation by vortices in superfluid \(^{3}\)He as a model of primordial baryogenesis. Nature 386, 689–692 (1997)

    Article  ADS  Google Scholar 

  10. M. Krusius, T. Vachaspati and G.E. Volovik, Flow instability in 3He-A as analog of generation of hypermagnetic field in early Universe, cond-mat/9802005 (1998)

  11. G.E. Volovik, Axial anomaly in 3He-A: simulation of baryogenesis and generation of primordial magnetic field in Manchester and Helsinki. Phys. B 255, 86–107 (1998). cond-mat/9802091

    Article  ADS  Google Scholar 

  12. C. Herring, Accidental degeneracy in the energy bands of crystals. Phys. Rev. 52, 365–373 (1937)

    Article  ADS  Google Scholar 

  13. A.A. Abrikosov, S.D. Beneslavskii, Possible existence of substances intermediate between metals and dielectrics. JETP 32, 699–798 (1971)

    ADS  Google Scholar 

  14. A.A. Abrikosov, Some properties of gapless semiconductors of the second kind. J. Low Temp. Phys. 5, 141–154 (1972)

    Article  ADS  Google Scholar 

  15. H.B. Nielsen, M. Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.A. Burkov, L. Balents, Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011)

    Article  ADS  Google Scholar 

  17. A.A. Burkov, M.D. Hook, L. Balents, Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011)

    Article  ADS  Google Scholar 

  18. H. Weng, C. Fang, Z. Fang, B.A. Bernevig, X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015)

    Google Scholar 

  19. S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B.K. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, M.Z. Hasan, A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015)

    Article  Google Scholar 

  20. B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015)

    Google Scholar 

  21. X. Su-Yang, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B.K. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M. Zahid Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015)

    Article  ADS  Google Scholar 

  22. L. Ling, Z. Wang, D. Ye, L. Ran, F. Liang, J.D. Joannopoulos, M. Soljacic, Experimental observation of Weyl points. Science 349, 622–624 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. M.Z. Hasan, S.-Y. Xu, I. Belopolski, S.-M. Huang, Discovery of Weyl fermion semimetals and topological Fermi arc states (2017), arXiv:1702.07310

  24. G.E. Volovik, V.A. Konyshev, Properties of the superfluid systems with multiple zeros in fermion spectrum. JETP Lett. 47, 250–254 (1988)

    ADS  Google Scholar 

  25. V. Pardo, W.E. Pickett, Half-metallic semi-Dirac-point generated by quantum confinement in TiO\(_2\)/VO\(_2\) nanostructures. Phys. Rev. Lett. 102, 166803 (2009)

    Article  ADS  Google Scholar 

  26. S. Banerjee, W.E. Pickett, Phenomenology of a semi-Dirac semi-Weyl semimetal. Phys. Rev. B 86, 075124 (2012)

    Article  ADS  Google Scholar 

  27. A.A. Soluyanov, D. Gresch, Z. Wang, Q.S. Wu, M. Troyer, X. Dai, B.A. Bernevig, Type-II Weyl semimetals. Nature 527, 495–498 (2015)

    Article  ADS  Google Scholar 

  28. X. Yong, F. Zhang, C. Zhang, Structured Weyl points in spin-orbit coupled fermionic superfluids. Phys. Rev. Lett. 115, 265304 (2015)

    Article  ADS  Google Scholar 

  29. T.-R. Chang, S.-Y. Xu, G. Chang, C.-C. Lee, S.-M. Huang, B.K. Wang, G. Bian, H. Zheng, D.S. Sanchez, I. Belopolski, N. Alidoust, M. Neupane, A. Bansil, H.-T. Jeng, H. Lin, M. Zahid Hasan, Prediction of an arc-tunable Weyl Fermion metallic state in Mo\(_{x}\)W\(_{1-x}\)Te\(_{2}\). Nat. Commun. 7, 10639 (2016)

    Article  ADS  Google Scholar 

  30. G. Autes, D. Gresch, A.A. Soluyanov, M. Troyer, O.V. Yazyev, Robust type-II Weyl semimetal phase in transition metal diphosphides XP\(_{2}\) (X = Mo, W). Phys. Rev. Lett. 117, 066402 (2016)

    Article  ADS  Google Scholar 

  31. S.-Y. Xu, N. Alidoust, G. Chang, H. Lu, B. Singh, I. Belopolski, D.S. Sanchez, X. Zhang, G. Bian, H. Zheng, M.-A. Husanu, Y. Bian, S.-M. Huang, C.-H. Hsu, T.-R. Chang, H.-T. Jeng, A. Bansil, V.N. Strocov, H. Lin, S. Jia, M.Z. Hasan, Discovery (theoretical and experimental) of Lorentz-violating Weyl fermion semimetal state in LaAlGe materials. Sci. Adv. 3(6), e1603266 (2017)

    Article  ADS  Google Scholar 

  32. J. Jiang, Z.K. Liu, Y. Sun, H.F. Yang, R. Rajamathi, Y.P. Qi, L.X. Yang, C. Chen, H. Peng, C.-C. Hwang, S.Z. Sun, S.-K. Mo, I. Vobornik, J. Fujii, S.S.P. Parkin, C. Felser, B.H. Yan, Y.L. Chen, Observation of the type-II Weyl semimetal phase in MoTe\(_{2}\). Nat. Commun. 8, 13973 (2017)

    Article  ADS  Google Scholar 

  33. I.M. Lifshitz, Anomalies of electron characteristics of a metal in the high pressure region. Sov. Phys. JETP 11, 1130 (1960)

    Google Scholar 

  34. G.E. Volovik, Topological Lifshitz transitions. Fizika Nizkikh Temperatur 43, 57–67 (2017). arXiv:1606.08318; Exotic Lifshitz transitions in topological materials, doi:10.3367/UFNr.2017.01.038218, doi:10.3367/UFNe.2017.01.038218, arXiv:1701.06435

  35. P. Huhtala, G.E. Volovik, Fermionic microstates within Painlevé-Gullstrand black hole. ZhETF 121, 995–1003 (2002). JETP 94, 853-861; gr-qc/0111055

  36. F.R. Klinkhamer, G.E. Volovik, Emergent CPT violation from the splitting of Fermi points. Int. J. Mod. Phys. A 20, 2795–2812 (2005). hep-th/0403037

    Article  ADS  MATH  Google Scholar 

  37. G.E. Volovik, Quantum phase transitions from topology in momentum space, in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, ed. by W.G. Unruh, R. Schützhold (Springer Lecture Notes in Physics, 2007), pp. 31–73

  38. G.E. Volovik, M.A. Zubkov, Emergent Weyl spinors in multi-fermion systems. Nucl. Phys. B 881, 514 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. C.D. Froggatt, H.B. Nielsen, Origin of Symmetry (World Scientific, Singapore, 1991)

    Book  Google Scholar 

  40. P. Hořava, Stability of Fermi surfaces and \(K\)-theory. Phys. Rev. Lett. 95, 016405 (2005)

    Article  ADS  Google Scholar 

  41. D. Li, B. Rosenstein, B.Y. Shapiro, I. Shapiro, Effect of the type-I to type-II Weyl semimetal topological transition on superconductivity. Phys. Rev. B 95, 094513 (2017)

    Article  ADS  Google Scholar 

  42. L. Kimme, T. Hyart, Existence of zero-energy impurity states in different classes of topological insulators and superconductors and their relation to topological phase transitions. Phys. Rev. B 93, 035134 (2016)

    Article  ADS  Google Scholar 

  43. T.T. Heikkilä, G.E. Volovik, Nexus and Dirac lines in topological materials. New J. Phys. 17, 093019 (2015)

    Article  ADS  Google Scholar 

  44. L.H. Kauffman, Knots and Physics (World Scientific, Singapore, 2001)

    Book  MATH  Google Scholar 

  45. R. Bi, Z. Yan, L. Lu, Z. Wang, Nodal-knot semimetals (2017), arXiv:1704.06849

  46. P. Painlevé, La mécanique classique et la théorie de la relativité. C. R. Hebd. Acad. Sci. (Paris) 173, 677–680 (1921)

    ADS  MATH  Google Scholar 

  47. A. Gullstrand, Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Arkiv. Mat. Astron. Fys. 16, 1–15 (1922)

    MATH  Google Scholar 

  48. W.G. Unruh, Experimental Black-Hole Evaporation. Phys. Rev. Lett. 46, 1351 (1981)

    Article  ADS  Google Scholar 

  49. W.G. Unruh, Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D 51, 2827–2838 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  50. P. Kraus, F. Wilczek, Some applications of a simple stationary line element for the Schwarzschild geometry. Mod. Phys. Lett. A 9, 3713–3719 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. C. Doran, New form of the Kerr solution. Phys. Rev. D 61, 067503 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  52. A. Kostelecky, N. Russell, Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 83, 11 (2011)

    Article  ADS  Google Scholar 

  53. G. Rubtsov, P. Satunin, S. Sibiryakov, Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons, arXiv:1611.10125

  54. G.E. Volovik, Topological invariants for Standard Model: from semi-metal to topological insulator. JETP Lett. 91, 55–61 (2010). arXiv:0912.0502

    Article  ADS  Google Scholar 

  55. M. Visser, Acoustic black holes: horizons, ergospheres, and Hawking radiation. Class. Quant. Grav. 15, 1767–1791 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. G.E. Volovik, Simulation of Panleve–Gullstrand black hole in thin \(^3\)He-A film. JETP Lett. 69, 705–713 (1999)

    Article  ADS  Google Scholar 

  57. M.K. Parikh, F. Wilczek, Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. D. Gosalbez-Martinez, I. Souza, D. Vanderbilt, Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe. Phys. Rev. B 92, 085138 (2015)

    Article  ADS  Google Scholar 

  59. V.A. Khodel, V.R. Shaginyan, Superfluidity in system with fermion condensate. JETP Lett. 51, 553 (1990)

    ADS  Google Scholar 

  60. G.E. Volovik, A new class of normal Fermi liquids. JETP Lett. 53, 222 (1991)

    ADS  Google Scholar 

  61. P. Nozieres, Properties of Fermi liquids with a finite range interaction. J. Phys. (Fr.) 2, 443 (1992)

    Article  ADS  Google Scholar 

  62. S.T. Belyaev, On the nature of the first excited states of even–even spherical nuclei. JETP 12, 968–976 (1961)

    Google Scholar 

  63. T.T. Heikkilä, G.E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, in: Basic Physics of Functionalized Graphite (Springer 2016, pp. 123–143), arXiv:1504.05824

  64. A.A. Shashkin, V.T. Dolgopolov, J.W. Clark, V.R. Shaginyan, M.V. Zverev, V.A. Khodel, Merging of Landau levels in a strongly-interacting two-dimensional electron system in silicon. Phys. Rev. Lett. 112, 186402 (2014)

    Article  ADS  Google Scholar 

  65. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A.I. Lichtenstein, M.I. Katsnelson, Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice. Phys. Rev. Lett. 112, 070403 (2014)

    Article  ADS  Google Scholar 

  66. G.E. Volovik, On Fermi condensate: near the saddle point and within the vortex core. JETP Lett. 59, 830 (1994)

    ADS  Google Scholar 

  67. A.P. Drozdov, M.I. Eremets, I.A. Troyan, Conventional superconductivity at 190 K at high pressures, IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2015, arXiv:1412.0460

  68. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 K at high pressures. Nature 525, 73 (2015)

    Article  ADS  Google Scholar 

  69. Y. Quan, W.E. Pickett, Impact of van Hove singularities in the strongly coupled high temperature superconductor H\(_3\)S. Phys. Rev. B 93, 104526 (2016)

    Article  ADS  Google Scholar 

  70. A. Bianconi, T. Jarlborg, Superconductivity above the lowest Earth temperature in pressurized sulfur hydride. EPL 112, 37001 (2015)

    Article  ADS  Google Scholar 

  71. A. Bianconi, T. Jarlborg, Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Novel Superconducting Materials 1, 15 (2015)

    Article  ADS  Google Scholar 

  72. T. Jarlborg, A. Bianconi, Breakdown of the Migdal approximation at Lifshitz transitions with a giant zero-point motion in H\(_3\)S superconductor. Sci. Rep. 6, 24816 (2016)

    Article  ADS  Google Scholar 

  73. A. Bussmann-Holder, J. Kohler, M.-H. Whangbo, A. Bianconi, A. Simon, High temperature superconductivity in sulfur hydride under ultrahigh pressure: A complex superconducting phase beyond conventional BCS. Nov. Supercond. Mater. 2, 37–42 (2016)

    Google Scholar 

  74. J.W. McClure, Band structure of graphite and de Haas-van Alphen effect. Phys. Rev. 108, 612–618 (1957)

    Article  ADS  Google Scholar 

  75. G.P. Mikitik, Y.V. Sharlai, Band-contact lines in the electron energy spectrum of graphite. Phys. Rev. B 73, 235112 (2006)

    Article  ADS  Google Scholar 

  76. G.P. Mikitik, Y.V. Sharlai, The Berry phase in graphene and graphite multilayers. Low Temp. Phys. 34, 780–794 (2008)

    Article  Google Scholar 

  77. T. Hyart, T.T. Heikkilä, Momentum-space structure of surface states in a topological semimetal with a nexus point of Dirac lines. Phys. Rev. B 93, 235147 (2016)

    Article  ADS  Google Scholar 

  78. J. Nissinen, G.E. Volovik, Type-III and IV interacting Weyl points. JETP Lett. 105, 447–452 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Ivo Souza for pointing out mistake in the early version and Tero Heikkilä for discussion on the type-II Dirac lines. The work by GEV has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement No. 694248). The work by KZ has been supported in part by the National Natural Science Foundation of China (NSFC) under Grant Nos. 11674200, 11422433 and 11604392.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volovik, G.E., Zhang, K. Lifshitz Transitions, Type-II Dirac and Weyl Fermions, Event Horizon and All That. J Low Temp Phys 189, 276–299 (2017). https://doi.org/10.1007/s10909-017-1817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1817-8

Keywords

Navigation