Skip to main content
Log in

BEC Decoherence in Hybrid Atom-Optical Quantum Gyroscope

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A concept of hybrid atom-optical quantum gyroscope based on ring-shaped Bose–Einstein condensate (BEC) of atoms is developed. Optical probe field grants the systems sensitivity to rotation and detects the condensate response to rotation via optical interferometry. Measurement of rotation angular velocity may ideally be fulfilled without loss of atoms, but inevitably leads to degradation of BEC spatial coherence. We construct a mathematical model of this crucial phenomenon. A quantum master equation for BEC state is derived and solved analytically in the slow decoherence limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. We assume that Ll, i.e. the finite coherence length does not obscure interference observation, despite the lengthening of the path in one of MZI arms due to cavity.

  2. There is no contradiction in appearance of two modes a and b instead of a single mode Ψ. It follows from the fact that apart from \(\hat {\Psi }\) = \(\sqrt p \hat {a}\) + \(\sqrt q \hat {b}\) there exists an orthogonal combination \({{\hat {\Psi }}_{ \bot }}\) = \(\sqrt q \hat {a}\)\(\sqrt p \hat {b}\), such that [\({{\hat {\Psi }}_{ \bot }}\), \({{\hat {\Psi }}^{\dag }}\)] = 0. For this reason, if a condensate is in the state |BEC〉 ∝ (\({{\hat {\Psi }}^{\dag }}\))N|0〉at, then 〈\(\hat {\Psi }_{ \bot }^{\dag }{{\hat {\Psi }}_{ \bot }}\)〉 = 0. During gyroscope operation, the latter equality is violated because of decoherence. The description indeed becomes two-mode.

REFERENCES

  1. J. J. Bollinger, W. M. Itano, and D. J. Wineland, Phys. Rev. A 54, R4649 (1996).

    Article  ADS  Google Scholar 

  2. S. Boixo et al., Phys. Rev. A 80, 032103 (2009).

  3. L. Pezze et al., Rev. Mod. Phys. 90, 035005 (2018).

  4. N. P. Robins, P. A. Altin, J. E. Debs, and J. D. Close, Phys. Rep. 529, 265296 (2013).

  5. J. J. Cooper, D. W. Hallwood, and J. A. Dunningham, Phys. Rev. A 81, 043624 (2010).

  6. D. V. Tsarev et al., Opt. Express 26, 19583 (2018).

    Article  ADS  Google Scholar 

  7. J. Joo, W. J. Munro, and T. P. Spiller, Phys. Rev. Lett. 107, 083601 (2011).

  8. O. I. Tolstikhin, T. Morishita, and S. Watanabe, Phys. Rev. A 72, 051603R (2005).

  9. V. A. Tomilin and L. V. Il’ichov, JETP Lett. 113, 212 (2021).

    Article  ADS  Google Scholar 

  10. U. Leonhardt, T. Kiss, and P. Piwnicki, Eur. Phys. J. D 7, 413 (1999).

    Article  ADS  Google Scholar 

  11. D. A. R. Dalvit, J. Dziarmaga, and R. Onofrio, Phys. Rev. A 65, 053604 (2002).

  12. S. S. Szigeti, M. R. Hush, A. R. R. Carvalho, and J. J. Hope, Phys. Rev. A 80, 013614 (2009).

  13. S. S. Szigeti, M. R. Hush, A. R. R. Carvalho, and J. J. Hope, Phys. Rev. A 82, 043632 (2010).

  14. E. O. Ilo-Okeke and T. Byrnes, Phys. Rev. Lett. 112, 233602 (2014).

  15. H. Hartmann, Theor. Chim. Acta 24, 201 (1972).

    Article  Google Scholar 

  16. M. Kibler and P. Winternitz, J. Phys. A: Math. Gen. 20, 4097 (1987).

    Article  ADS  Google Scholar 

  17. L. Chetouani, L. Guechi, and T. F. Hammann, J. Math. Phys. 33, 3410 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Jordan, Zeitschr. Phys. 94, 531 (1935).

    Article  ADS  Google Scholar 

  19. J. Schwinger, in Quantum Theory of Angular Momentum, Ed. by L. C. Biedenharn and H. Van Dam (Academic, New York, 1965).

    MATH  Google Scholar 

  20. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskiy, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Scientific, Singapore, 1988).

  21. T. Vanderbruggen et al., Phys. Rev. Lett. 110, 210503 (2013).

Download references

Funding

This work is supported by the State order (project AAAA-A21-121021800168-4) at the Institute of Automation and Electrometry SB RAS. Participation of L.V. Il’ichov is supported by RSCF (grant 20-12-00081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tomilin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilin, V.A., Il’ichov, L.V. BEC Decoherence in Hybrid Atom-Optical Quantum Gyroscope. J. Exp. Theor. Phys. 135, 285–290 (2022). https://doi.org/10.1134/S1063776122090114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122090114

Navigation