Skip to main content
Log in

Cylindrical Gravitational Pulse Waveguide Excitations

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Following the recent observations of gravitational waves by the LIGO-Virgo science team [Phys. Rev. Lett. 116, 061102 (2016)] resulting from the collision of two black holes in the framework of general relativity theory whose practical studies have listed different types of energy due to the propagation of these massive bodies, we investigate an underlying approach of constructing impulse waves in the form of explosion and implosion excitations, where we use the exact solutions of the field equations derived from the Pomeransky inverse scattering method. In this approach, we assimilate the gravitational soliton to the impulse wave whose propagation allows to unveiling the physical meanings of the different energy densities within the Einstein and Rosen structure while discussing the numerical approach from Piran and Stark to such a problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einsteins Field Equations, 2nd ed. (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  2. A. Ashtekar, Gen. Relativ. Grav. 46, 1706 (2014).

    Article  ADS  Google Scholar 

  3. J. Weber and J. A. Wheeler, Rev. Mod. Phys. 29, 509 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Piran, P. N. Safier, and R. F. Stark, Phys. Rev. D 32, 3101 (1985).

    Article  ADS  Google Scholar 

  5. V. A. Belinski and E. Verdaguer, Gravitational Soliton (Cambridge Univ. Press, Cambridge, 2001).

    Book  Google Scholar 

  6. V. Belinsky and V. Zakharov, Sov. Phys. JETP 48, 985 (1978).

    ADS  Google Scholar 

  7. A. D. Dagotto, R. J. Glleiser, and C. O. Nicasio, Class. Quantum Grav. 8, 1185 (1991).

    Article  ADS  Google Scholar 

  8. R. Penrose, Gen. Relativ. Grav. 34, 7 (2002).

    Article  Google Scholar 

  9. M. Lanzagorta, Quantum Information in Gravitational Fields (Morgan Claypool, San Rafael, 2014).

    Book  Google Scholar 

  10. A. A. Pomeransky, Phys. Rev. D 73, 044004 (2006).

  11. S. Tomizawa and T. Mishima, Phys. Rev. D 90, 044036 (2014).

  12. T. Igata and S. Tomizawa, Phys. Rev. D 91, 124008 (2015).

  13. S. Tomizawa and T. Mishima, Phys. Rev. D 91, 124058 (2015).

  14. A. Tomimatsu, Gen. Relativ. Grav. 21, 613 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  15. B. P. Abbott et al. (LIGO-Virgo Sci. Collab.), Phys. Rev. Lett. 116, 061102 (2016).

  16. M. Halilsoy, Nuovo Cim. 102, 6 (1988).

    Article  Google Scholar 

  17. A. Alekseev, Phys. Rev. D 93, 061501(R) (2016).

  18. A. Einstein and N. Rosen, J. Franklin Inst. 223, 43 (1937).

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Jordan, J. Ehlers, and W. Kundt, Abh. Akad. Wiss. Mainz. Math. Naturwiss. Kl. 2, 21 (1960);

    Google Scholar 

  20. A. S. Kompaneets, Sov. Phys. JETP 7, 659 (1958).

    MathSciNet  Google Scholar 

  21. B. Xanthopoulos, Phys. Rev. D. 34, 12 (1986).

    Article  Google Scholar 

  22. F. R. Villatoro, in Nonlinear Systems, Vol. 1: Mathematical Theory and Computational Methods, Ed. by V. Carmona et al. (Springer, Cham, 2018), p. 207.

  23. H. Bondi, Nature (London) 179, 1702 (1957).

    Article  Google Scholar 

  24. W. B. Bonor, Nature (London) 181, 1196 (1958).

    Article  ADS  Google Scholar 

  25. N. Rosen, Phys. Rev. 110, 291 (1958).

    Article  ADS  Google Scholar 

  26. K. Throne, Phys. Rev. B 138, 251 (1965).

    Article  Google Scholar 

  27. B. P. Abbott et al. (LIGO-Virgo Sci. Collab.), Class. Quantum Grav. 37, 055002 (2020).

Download references

ACKNOWLEDGMENTS

The authors would like to express their sincere thanks to the anonymous referees for their critical comments and appropriate suggestions which made this paper more precise and readable. They also appreciate the contributions of Mr. Joe Wabo and Ms. Zang Sedena Christine for the improvement of the English language in the text.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. J. Defo or V. K. Kuetche.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defo, J.J., Kuetche, V.K. Cylindrical Gravitational Pulse Waveguide Excitations. J. Exp. Theor. Phys. 135, 324–332 (2022). https://doi.org/10.1134/S1063776122090035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122090035

Navigation