Skip to main content
Log in

On the Decomposition Theorem for Gluons

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, the problem of spin and orbital angular momentum (AM) separation has widely been discussed. Nowadays, all discussions about the possibility to separate the spin AM from the orbital AM in the gauge invariant manner are based on the ansatz that the gluon field can be presented in form of the decomposition where the physical gluon components are additive to the pure gauge gluon components, i.e. Aμ = \(A_{\mu }^{{{\text{phys}}}}\) + \(A_{\mu }^{{{\text{pure}}}}\). In the present paper, we show that in the non-Abelian gauge theory this gluon decomposition has a strong mathematical evidence in the frame of the contour gauge conception. In other words, we reformulate the gluon decomposition ansatz as a theorem on decomposition and, then, we use the contour gauge to prove this theorem. In the first time, we also demonstrate that the contour gauge possesses the special kind of residual gauge related to the boundary field configurations and expressed in terms of the pure gauge fields. As a result, the trivial boundary conditions lead to the inference that the decomposition includes the physical gluon configurations only provided by the contour gauge condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. The comprehensive analysis of the non-Abelian Stocks theorem can be found in [18].

  2. In the local gauge, the corresponding exponential disappears thanks to the nullified integrand A+ = 0.

REFERENCES

  1. X. Ji, F. Yuan, and Y. Zhao, Nat. Rev. Phys. 3, 27 (2021).

    Article  Google Scholar 

  2. R. L. Jaffe and A. Manohar, Nucl. Phys. B 337, 509 (1990).

    Article  ADS  Google Scholar 

  3. X. D. Ji, Phys. Rev. Lett. 78, 610 (1997).

    Article  ADS  Google Scholar 

  4. X. S. Chen et al., Phys. Rev. Lett. 100, 232002 (2008).

  5. X. S. Chen et al., Phys. Rev. Lett. 103, 062001 (2009).

  6. X. Ji, Phys. Rev. Lett. 106, 259101 (2011).

  7. M. Wakamatsu, Int. J. Mod. Phys. A 29, 1430012 (2014).

  8. M. Wakamatsu, Eur. Phys. J. A 51, 52 (2015).

    Article  ADS  Google Scholar 

  9. M. Wakamatsu et al., Ann. Phys. 392, 287 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Lorce, Phys. Lett. B 719, 185 (2013).

    Article  ADS  Google Scholar 

  11. C. Lorcé, Phys. Rev. D 88, 044037 (2013).

  12. E. Leader and C. Lorcé, Phys. Rept. 541, 163 (2014).

    Article  ADS  Google Scholar 

  13. M. Wakamatsu, Phys. Rev. D 84, 037501 (2011).

  14. M. Wakamatsu, Phys. Rev. D 83, 014012 (2011).

  15. M. Wakamatsu, Phys. Rev. D 81, 114010 (2010).

  16. P. M. Zhang and D. G. Pak, Eur. Phys. J. A 48, 91 (2012).

    Article  ADS  Google Scholar 

  17. S. Bashinsky and R. L. Jaffe, Nucl. Phys. B 536, 303 (1998).

    Article  ADS  Google Scholar 

  18. Y. A. Simonov, Sov. J. Nucl. Phys. 50, 134 (1989).

    Google Scholar 

  19. A. V. Belitsky and A. V. Radyushkin, Phys. Rep. 418, 1 (2005).

    Article  ADS  Google Scholar 

  20. S. V. Ivanov et al., Sov. J. Nucl. Phys. 44, 145 (1986).

    Google Scholar 

  21. S. V. Ivanov and G. P. Korchemsky, Phys. Lett. B 154, 197 (1985).

    Article  ADS  Google Scholar 

  22. I. V. Anikin, arXiv: 2105.09430 [hep-ph].

  23. I. V. Anikin et al., Nucl. Phys. B 828, 1 (2010).

    Article  ADS  Google Scholar 

  24. I. V. Anikin et al., Phys. Rev. D 95, 034032 (2017).

  25. S. Mandelstam, Ann. Phys. 19, 1 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  26. B. S. DeWitt, Phys. Rev. 125, 2189 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Lorce, Phys. Rev. D 87, 034031 (2013).

  28. L. D. Faddeev and A. A. Slavnov, Front. Phys. 50, 1 (1980).

    Google Scholar 

  29. L. D. Faddeev and V. N. Popov, Sov. Phys. Usp. 16, 777 (1973).

    Article  ADS  Google Scholar 

  30. H. Weigert and U. W. Heinz, Z. Phys. C 56, 145 (1992).

    Article  ADS  Google Scholar 

  31. M. B. Mensky, Theor. Math. Phys. 173, 1668 (2012).

    Article  Google Scholar 

  32. I. V. Anikin and O. V. Teryaev, Phys. Lett. B 690, 519 (2010).

    Article  ADS  Google Scholar 

  33. I. V. Anikin and O. V. Teryaev, Eur. Phys. J. C 75, 184 (2015).

    Article  ADS  Google Scholar 

  34. L. Durand and E. Mendel, Phys. Lett. B 85, 241 (1979).

    Article  ADS  Google Scholar 

  35. Y. Hatta, Phys. Rev. D 84, 041701 (2011).

  36. A. V. Belitsky et al., Nucl. Phys. B 656, 165 (2003).

    Article  ADS  Google Scholar 

  37. M. Burkardt, Phys. Rev. D 88, 014014 (2013).

Download references

ACKNOWLEDGMENTS

We thank C. Lorce, D.G. Pak, M.V. Polyakov, L. Szymanowski for useful discussions. IVA is grateful to O.V. Teryaev for fruitful comments on the early stage of the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Anikin or A. S. Zhevlakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, I.V., Zhevlakov, A.S. On the Decomposition Theorem for Gluons. J. Exp. Theor. Phys. 135, 73–80 (2022). https://doi.org/10.1134/S1063776122070081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122070081

Navigation