Skip to main content
Log in

Collisional Radiative Involvement of Molecules into Resonance with the IR Laser Field in a Two-Component Molecular Medium

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Collisional radiative involvement of molecules not absorbing IR laser radiation into resonance with a laser field has been investigated for the case when nonabsorbing and absorbing molecules are laser-irradiated in a two-component medium. Experiments have been conducted with a CF2HCl/CF3Br mixture at a 1/1 pressure ratio. Molecules have been excited by a pulsed CO2 laser. Two types of experiments have been considered: (i) molecules were irradiated under nonequilibrium thermodynamic conditions due to a compression shock wave arising before the solid surface when it was subjected to a supersonic pulsed gasdynamically cooled molecular flux and (ii) molecules were irradiated under static conditions with a gas in the cell kept at room temperature. It has been found that when molecules vibrationally cooled in the compression shock wave (in this case, their IR absorption bands are narrow; the FWHM is 7–8 cm–1) are irradiated, initially nonabsorbing CF2HCl molecules get effectively involved into resonance with the laser field. Their effective dissociation (with dissociation yield β ≥ 10–15%) has been discovered when the CF2HCl/CF3Br mixture was irradiated under the condition of CO2 laser frequency detuning by more than 15–25 cm–1 from the center of the IR absorption band of molecules vibrationally cooled in the compression shock wave. If molecules are irradiated at room temperature (the gas temperature in the cell), in which case the IR absorption band of molecules is rather wide (25–30 cm–1), the collisional radiative involvement of CF2HCl molecules into interaction with the laser field, albeit less pronounced, persists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. N. Makarov, Phys. Usp. 58, 670 (2015).

    Article  ADS  Google Scholar 

  2. G. N. Makarov, Phys. Usp. (2022, in press)

  3. J. W. Eerkens and J. Kim, AIChE J. 56, 2331 (2010).

    Google Scholar 

  4. G. N. Makarov and A. N. Petin, JETP Lett. 93, 109 (2011).

    Article  ADS  Google Scholar 

  5. G. N. Makarov and A. N. Petin, J. Exp. Theor. Phys. 119, 398 (2014).

    Article  Google Scholar 

  6. K. A. Lyakhov, H. J. Lee, and A. N. Pechen, Sep. Purif. Technol. 176, 402 (2017).

    Article  Google Scholar 

  7. K. A. Lyakhov, A. N. Pechen, and H. J. Lee, AIP Adv. 8, 095325 (2018).

  8. J. Guo, Y.-J. Li, J.-P. Ma, X. Tang, and X.-S. Liu, Chem. Phys. Lett. 773, 138572 (2021).

  9. V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. D. Ogurok, and E. A. Ryabov, J. Exp. Theor. Phys. 125, 531 (2017).

    Article  ADS  Google Scholar 

  10. V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. D. Ogurok, and E. A. Ryabov, Quantum Electron. 48, 157 (2018).

    Article  ADS  Google Scholar 

  11. V. M. Apatin, G. N Makarov, N.-D. D. Ogurok, A. N. Petin, and E. A. Ryabov, J. Exp. Theor. Phys. 127, 244 (2018).

    Article  ADS  Google Scholar 

  12. V. N. Lokhman, G. N. Makarov, A. L. Malinovskii, A. N. Petin, D. G. Poydashev, and E. A. Ryabov, Laser Phys. 28, 105703 (2018).

  13. G. N. Makarov, N.-D. D. Ogurok, and A. N. Petin, Quantum Electron. 48, 667 (2018).

    Article  ADS  Google Scholar 

  14. G. N. Makarov, Phys. Usp. 61, 617 (2018).

    Article  ADS  Google Scholar 

  15. V. N. Lokhman, G. N. Makarov, A. N. Petin, D. G. Poidashev, and E. A. Ryabov, J. Exp. Theor. Phys. 128, 188 (2019).

    Article  ADS  Google Scholar 

  16. A. N. Petin and G. N. Makarov, Quantum Electron. 49, 593 (2019).

    Article  ADS  Google Scholar 

  17. G. N. Makarov, Phys. Usp. 63, 245 (2020).

    Article  ADS  Google Scholar 

  18. G. N. Makarov, Quantum Electron. 51, 643 (2021).

    Article  ADS  Google Scholar 

  19. G. N. Makarov, J. Exp. Theor. Phys. 133, 669 (2021.

    Article  ADS  Google Scholar 

  20. V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and E. A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry (Harwood Academic, Chur, 1985).

    Google Scholar 

  21. C. D. Cantrell, Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Vol. 35 of Topics in Current Physics (Springer, Berlin, 1986).

  22. J. L. Lyman, G. P. Quigley, and O. P. Judd, in Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Ed. by C. D. Cantrell (Springer, Berlin, 1986), p. 34.

    Google Scholar 

  23. G. N. Makarov, Phys. Usp. 48, 37 (2005).

    Article  ADS  Google Scholar 

  24. V. S. Letokhov and E. A. Ryabov, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 1, p. 445 [in Russian].

    Google Scholar 

  25. V. Yu. Baranov, A. P. Dyad’kin, V. S. Letokhov, E. A. Ryabov, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 1, p. 460 [in Russian].

    Google Scholar 

  26. V. Yu. Baranov, A. P. Dyadkin, D. D. Malynta, V. A. Kuzmenko, S. V. Pigulsky, V. S. Letokhov, V. B. Laptev, E. A. Ryabov, I. V. Yarovoi, V. B. Zarin, and A. S. Podorashy, in Proceedings of the Conference on Progress in Research and Development of High-Power Industrial CO2-Lasers, Proc. SPIE 4165, 314 (2000).

    Article  ADS  Google Scholar 

  27. A. V. Evseev, A. A. Puretskii, and V. V. Tyakht, Sov. Phys. JETP 61, 34 (1985).

    ADS  Google Scholar 

  28. V. N. Lokhman, G. N. Makarov, E. A. Ryabov, and M. V. Sotnikov, Quantum Electron. 26, 79 (1996).

    Article  ADS  Google Scholar 

  29. http://www.silex.com.au.

  30. SILEX Process. http://www.chemeurope.com/en/encyclopedia/Silex_Process.html.

  31. SILEX Uranium Enrichment, SILEX Annual Report 2019. http://www.silex.com.au.

  32. J. L. Lyman, Report LA-UR-05-3786 (Los Alamos Natl. Labor., 2005).

  33. G. N. Makarov and A. N. Petin, Quantum Electron. 46, 248 (2016).

    Article  ADS  Google Scholar 

  34. G. N. Makarov and A. N. Petin, Chem. Phys. Lett. 323, 345 (2000).

    Article  ADS  Google Scholar 

  35. G. N. Makarov and A. N. Petin, J. Exp. Theor. Phys. 92, 1 (2001).

    Article  ADS  Google Scholar 

  36. G. N. Makarov and A. N. Petin, Chem. Phys. 266, 125 (2001).

    Article  Google Scholar 

  37. V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. D. Ogurok, and A. N. Petin, Opt. Spectrosc. 91, 852 (2001).

    Article  ADS  Google Scholar 

  38. G. N. Makarov, S. A. Mochalov, and A. N. Petin, Quantum Electron. 31, 263 (2001).

    Article  ADS  Google Scholar 

  39. G. N. Makarov, Phys. Usp. 46, 889 (2003).

    Article  ADS  Google Scholar 

  40. R. S. McDowell, B. J. Krohn, H. Flicker, and M. C. Vasquez, Spectrochim. Acta, Part A 42, 351 (1986).

    Article  ADS  Google Scholar 

  41. G. Baldacchini, S. Marchetti, and V. Montelatici, J. Mol. Spectrosc. 91, 80 (1982).

    Article  ADS  Google Scholar 

  42. W. Fuss, Spectrochim. Acta, Part A 38, 829 (1982).

    Article  ADS  Google Scholar 

  43. G. N. Makarov and A. N. Petin, JETP Lett. 111, 325 (2020).

    Article  ADS  Google Scholar 

  44. G. N. Makarov and A. N. Petin, JETP Lett. 112, 213 (2020).

    Article  ADS  Google Scholar 

  45. G. N. Makarov and A. N. Petin, Quantum Electron. 50, 1036 (2020).

    Article  ADS  Google Scholar 

  46. G. N. Makarov and A. N. Petin, J. Exp. Theor. Phys. 132, 233 (2021).

    Article  ADS  Google Scholar 

  47. G. N. Makarov and A. N. Petin, JETP Lett. 115, 256 (2022).

    Article  ADS  Google Scholar 

  48. A. Pietropolli Charmet, P. Stoppa, P. Toninello, A. Baldacci, and S. Giorgiani, Phys. Chem. Chem. Phys. 8, 2491 (2006).

    Article  Google Scholar 

  49. M. Snels and G. D’Amico, J. Mol. Spectrosc. 209, 1 (2001).

    Article  ADS  Google Scholar 

  50. J. B. Anderson, in Gasdynamics, Molecular Beams and Low Density Gasdynamics, Ed. by P. P. Wegener (Marcel Dekker, New York, 1974).

    Google Scholar 

  51. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967).

  52. G. N. Abramovich, Applied Gas Dynamics, Part 1 (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  53. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  54. R. Kadibelban, R. Ahrens-Botzong, and P. Hess, Z. Naturforsch. 37a, 271 (1982).

  55. V. Tosa, R. Bruzzese, C. De Listo, and D. Tescione, Laser Chem. 15, 47 (1994).

    Article  Google Scholar 

  56. J. G. McLaughlin, M. Poliakoff, and J. J. Turner, J. Mol. Struct. 82, 51 (1982).

    Article  ADS  Google Scholar 

  57. E. Borsella, C. Clementi, R. Fantoni, A. Giardini-Guidoni, and A. Polucci, Nuovo Cim. A 73, 364 (1983).

    Article  ADS  Google Scholar 

  58. M. Drouin, M. Gauthier, R. Pilon, P. A. Hackett, and C. Willis, Chem. Phys. Lett. 60, 16 (1978).

    Article  ADS  Google Scholar 

  59. V. N. Kondrat’ev, Chemical Bond Dissociation Energies, Ionisation Potentials and Electron Affinity (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  60. D. S. King and J. C. Stephenson, Chem. Phys. Lett. 66, 33 (1979).

    Article  ADS  Google Scholar 

  61. R. S. Karve, S. K. Sarkar, K. V. S. Rama Rao, and J. P. Mittal, Appl. Phys. B 53, 108 (1991).

    Article  ADS  Google Scholar 

  62. V. B. Laptev, E. A. Ryabov, and N. P. Furzikov, Sov. Phys. JETP 62, 889 (1985).

    ADS  Google Scholar 

  63. V. B. Laptev and N. P. Furzikov, Sov. J. Quantum Electron. 17, 1570 (1987).

    Article  ADS  Google Scholar 

  64. B. H. Mahan, J. Chem. Phys. 46, 98 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Makarov.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laptev, V.B., Makarov, G.N., Petin, A.N. et al. Collisional Radiative Involvement of Molecules into Resonance with the IR Laser Field in a Two-Component Molecular Medium. J. Exp. Theor. Phys. 135, 48–57 (2022). https://doi.org/10.1134/S1063776122070032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122070032

Navigation