Skip to main content
Log in

Intense Infrared Laser-Induced Radiation–Collision Involvement of Molecules That Do Not Absorb Laser Radiation in Resonance with a Laser Field in a Two-Component Molecular Medium

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Effective radiation–collision involvement of molecules that do not absorb laser radiation in resonance with a laser field in a two-component molecular medium that includes molecules absorbing laser radiation and is subjected to intense infrared laser radiation has been detected. Experiments have been performed with the CF2HCl/CF3Br mixture (at the 1/1 pressure ratio), where molecules are under nonequilibrium thermodynamic conditions in a shock wave, which has been formed in front of the solid surface on which a gas-dynamically cooled intense pulsed molecular beam is incident. Molecules have been excited by the pulsed radiation of a СО2 laser. A method has been described and the first results have been reported. Effective dissociation of CF2HCl molecules (with the yield β ≥ 10–15%) in the CF2HCl/CF3Br mixture irradiated by the CO2 laser detuned by more than 15–25 cm–1 from the center of the infrared absorption band of CF2HCl molecules vibrationally cooled in the shock wave has been detected at quite low excitation energy densities (Φ ≤ 0.5–1.0 J/cm2) at which dissociation of CF2HCl molecules in a pure gas hardly occurs. The results can be applied to separate isotopes using the method of isotope-selective infrared laser dissociation of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. N. Makarov, Phys. Usp. 58, 670 (2015).

    Article  ADS  Google Scholar 

  2. G. N. Makarov, Phys. Usp. 65 (2022, in press).https://doi.org/10.3367/UFNr.2021.02.038942

  3. G. N. Makarov and A. N. Petin, JETP Lett. 93, 109 (2011).

    Article  ADS  Google Scholar 

  4. K. A. Lyakhov, H. J. Lee, and A. N. Pechen, Sep. Purif. Technol. 176, 402 (2017).

    Article  Google Scholar 

  5. K. A. Lyakhov and A. N. Pechen, Appl. Phys. B 126 (8), 141 (2020).

    Article  ADS  Google Scholar 

  6. J. Guo, Y.-J. Li, J.-P. Ma, X. Tang, and X.-S. Liu, Chem. Phys. Lett. 773, 138572 (2021).

  7. P. M. B. Sai, A. Ghosh, T. Dwivedi, G. Chakraborty, R. C. Das, D. J. Biswas, and J. P. Nilaya, Chem. Phys. Lett. 787, 139262 (2022).

  8. V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. D. Ogurok, and E. A. Ryabov, J. Exp. Theor. Phys. 125, 531 (2017).

    Article  ADS  Google Scholar 

  9. V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. D. Ogurok, and E. A. Ryabov, Quantum Electron. 48, 157 (2018).

    Article  ADS  Google Scholar 

  10. V. M. Apatin, G. N. Makarov, N.-D. D. Ogurok, A. N. Petin, and E. A. Ryabov, J. Exp. Theor. Phys. 127, 244 (2018).

    Article  ADS  Google Scholar 

  11. V. N. Lokhman, G. N. Makarov, A. L. Malinovskii, A. N. Petin, D. G. Poydashev, and E. A. Ryabov, Laser Phys. 28, 105703 (2018).

  12. G. N. Makarov, N. D. D. Ogurok, and A. N. Petin, Quantum Electron. 48, 667 (2018).

    Article  ADS  Google Scholar 

  13. V. N. Lokhman, G. N. Makarov, A. N. Petin, D. G. Poidashev, and E. A. Ryabov, J. Exp. Theor. Phys. 128, 188 (2019).

    Article  ADS  Google Scholar 

  14. A. N. Petin and G. N. Makarov, Quantum Electron. 49, 593 (2019).

    Article  ADS  Google Scholar 

  15. G. N. Makarov, Phys. Usp. 63, 245 (2020).

    Article  ADS  Google Scholar 

  16. G. N. Makarov and A. N. Petin, Quantum Electron. 46, 248 (2016).

    Article  ADS  Google Scholar 

  17. V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and E. A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry (Harwood Academic, Chur, 1985).

    Google Scholar 

  18. V. Yu. Baranov, A. P. Dyad’kin, V. S. Letokhov, and E. A. Ryabov, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 1, p. 460 [in Russian].

    Google Scholar 

  19. A. V. Evseev, A. A. Puretskii, and V. V. Tyakht, Sov. Phys. JETP 61, 34 (1985).

    ADS  Google Scholar 

  20. V. N. Lokhman, G. N. Makarov, E. A. Ryabov, and M. V. Sotnikov, Quantum Electron. 26, 79 (1996).

    Article  ADS  Google Scholar 

  21. G. N. Makarov and A. N. Petin, JETP Lett. 111, 325 (2020).

    Article  ADS  Google Scholar 

  22. G. N. Makarov and A. N. Petin, JETP Lett. 112, 213 (2020).

    Article  ADS  Google Scholar 

  23. G. N. Makarov and A. N. Petin, Quantum Electron. 50, 1036 (2020).

    Article  ADS  Google Scholar 

  24. G. N. Makarov and A. N. Petin, J. Exp. Theor. Phys. 132, 233 (2021).

    Article  ADS  Google Scholar 

  25. A. Pietropolli Charmet, P. Stoppa, P. Toninello, A. Baldacci, and S. Giorgiani, Phys. Chem. Chem. Phys. 8, 2491 (2006).

    Article  Google Scholar 

  26. M. Snels and G. D’Amico, J. Mol. Spectrosc. 209, 1 (2001).

    Article  ADS  Google Scholar 

  27. J. B. Anderson, in Gasdynamics, Molecular Beams and Low Density Gasdynamics, Ed. by P. P. Wegener (Marcel Dekker, New York, 1974).

    Google Scholar 

  28. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic Press, New York, 1966, 1967).

  29. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  30. R. Kadibelban, R. Ahrensbotzong, and P. Hess, Z. Naturforsch. 37a, 271 (1982).

  31. V. Tosa, R. Bruzzese, C. de Listo, and D. Tescione, Laser Chem. 15, 47 (1994).

    Article  Google Scholar 

  32. G. N. Makarov, Phys. Usp. 46, 889 (2003).

    Article  ADS  Google Scholar 

  33. J. G. McLaughlin, M. Poliakoff, and J. J. Turner, J. Mol. Struct. 82, 51 (1982).

    Article  ADS  Google Scholar 

  34. D. S. King and J. C. Stephenson, Chem. Phys. Lett. 66, 33 (1979).

    Article  ADS  Google Scholar 

  35. V. N. Kondrat’ev, Chemical Bond Dissociation Energies, Ionization Potentials and Electron Affinity (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  36. M. Drouin, M. Gauthier, R. Pilon, P. A. Hackett, and C. Willis, Chem. Phys. Lett. 60, 16 (1978).

    Article  ADS  Google Scholar 

  37. R. S. Karve, S. K. Sarkar, K. V. S. Rama Rao, and J. P. Mittal, Appl. Phys. B 53, 108 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Makarov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, G.N., Petin, A.N. Intense Infrared Laser-Induced Radiation–Collision Involvement of Molecules That Do Not Absorb Laser Radiation in Resonance with a Laser Field in a Two-Component Molecular Medium. Jetp Lett. 115, 256–260 (2022). https://doi.org/10.1134/S0021364022100174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022100174

Navigation