Skip to main content
Log in

Electronic Structure and Mechanical Properties of Ti5Si3

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The atomic and electronic structures, the elastic moduli, the vibrational frequencies, and the thermodynamic characteristics of the Ti5Si3 titanium silicide are calculated by the projector augmented wave method within the density functional theory. The Fermi surface is calculated and the electron velocity on all its four sheets is estimated. An analysis of the spatial dependence of linear compressibility, Young’s modulus, and shear modulus demonstrates their weak anisotropy, and the anisotropy of Poisson’s ratio is more pronounced. The phonon spectrum of the titanium silicide is calculated and its thermodynamic characteristics are estimated. On the whole, the calculation results are in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. J. P. Gambino and E. G. Colgan, Mater. Chem. Phys. 52, 99 (1998).

    Article  Google Scholar 

  2. L. J. Chen, Silicide Technology for Integrated Circuits (IEE, London, 2009).

    Google Scholar 

  3. L. N. Lie, W. A. Tiller, and K. C. Saraswat, J. Appl. Phys. 56, 2127 (1984).

    Article  ADS  Google Scholar 

  4. H. Jeon, C. A. Sukow, J. W. Honeycutt, et al., J. Appl. Phys. 71, 4270 (1992).

    Article  ADS  Google Scholar 

  5. F. La Via, F. Mammoliti, G. Corallo, et al., Appl. Phys. Lett. 78, 1864 (2001).

    Article  ADS  Google Scholar 

  6. T. Takasugi, Mater. Res. Soc. Symp. Proc. 213, 403 (1991).

    Article  Google Scholar 

  7. H. J. Grabke and G. H. Meier, Oxid. Met. 44, 147 (1995).

    Article  Google Scholar 

  8. M. K. Meyer and M. Akinc, J. Am. Ceram. Soc. 79, 938 (1996).

    Article  Google Scholar 

  9. Z. Li and W. Gao, in Intermetallics Research Progress, Ed. by Y. N. Berdovsky (Nova Sci., New York, 2008), p. 1.

    Google Scholar 

  10. A. V. Bakulin and S. E. Kulkova, J. Exp. Theor. Phys. 127, 1046 (2018).

    Article  ADS  Google Scholar 

  11. A. V. Bakulin, L. S. Chumakova, and S. E. Kulkova, J. Exp. Theor. Phys. 133, 169 (2021).

    Article  ADS  Google Scholar 

  12. X. Y. Li, S. Taniguchi, Y. Matsunaga, et al., Intermetallics 11, 143 (2003).

    Article  Google Scholar 

  13. H. R. Jiang, Z. L. Wang, W. S. Ma, et al., Trans. Nonferr. Met. Soc. Chin. 18, 512 (2008).

    Google Scholar 

  14. J. Huang, F. Zhao, X. Cui, et al., Appl. Surf. Sci. 582, 152444 (2022).

  15. Z. Tang, A. J. Thom, and M. Akinc, Intermetallics 14, 537 (2006).

    Article  Google Scholar 

  16. L. Zhang and J. Wu, Acta Mater. 46, 3535 (1998).

    Article  ADS  Google Scholar 

  17. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  18. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  20. T. A. Manz and N. G. Limas, RSC Adv. 6, 47771 (2016).

    ADS  Google Scholar 

  21. R. Dronskowski and P. E. Blöchl, J. Phys. Chem. 97, 8617 (1993).

    Article  Google Scholar 

  22. S. Maintz, V. L. Deringer, A. L. Tchougreeff, et al., J. Comput. Chem. 37, 1030 (2016).

    Article  Google Scholar 

  23. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985).

    Google Scholar 

  24. J. J. Williams, Y. Y. Ye, M. J. Kramer, et al., Intermetallics 8, 937 (2000).

    Article  Google Scholar 

  25. P. F. Zhang, Y. X. Li, and P. K. Bai, IOP Conf. Ser.: Mater. Sci. Eng. 284, 012013 (2017).

  26. J. Yamashita and S. Asano, Prog. Theor. Phys. 48, 2119 (1972).

    Article  ADS  Google Scholar 

  27. W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th ed. (CRC, Taylor and Francis, Boca Raton, FL, 2015), p. 9-97.

  28. F. J. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1985).

    Google Scholar 

  29. K. Kishida, M. Fujiwara, H. Adachi, et al., Acta Mater. 58, 846 (2010).

    Article  ADS  Google Scholar 

  30. W. Voigt, Physical Properties of Crystals, 2nd ed. (Teubner, Leipzig, 1928), p. 716.

    Google Scholar 

  31. A. Reuss and Z. Angew, Math. Mech. 9, 49 (1929).

    Google Scholar 

  32. R. Hill, Proc. Phys. Soc. London, Sect. A 65, 349 (1952).

    Google Scholar 

  33. D. G. Pettivor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  34. L. Zhang and J. Wu, Scr. Mater. 38, 307 (1998).

    Article  Google Scholar 

  35. K. Kasraee, M. Yousefpour, and S. A. Tayebifard, J. Alloys Compd. 779, 942 (2019).

    Article  Google Scholar 

  36. S. F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  37. T. C. T. Ting, J. Elast. 81, 271 (2005).

    Article  Google Scholar 

  38. D. G. Archer, J. Chem. Eng. Data 41, 571 (1996).

    Article  Google Scholar 

  39. S. Agarwal, E. J. Cotts, S. Zarembo, et al., J. Alloys Compd. 314, 99 (2001).

    Article  Google Scholar 

  40. H. Seifert, H. Lukas, and G. Petzow, Z. Metallkd. 87, 2 (1996).

    Google Scholar 

  41. D. O. Poletaev, A. G. Lipnitskii, A. I. Kartamyshev, et al., Comput. Mater. Sci. 95, 456 (2014).

    Article  Google Scholar 

  42. C. Colinet and J. C. Tedenac, Intermetallics 18, 1444 (2010).

    Article  Google Scholar 

  43. C. Colinet and J. C. Tedenac, CALPHAD 37, 94 (2012).

    Article  Google Scholar 

  44. T. Nakashima and Y. Umakoshi, Philos. Mag. Lett. 66, 317 (1992).

    Article  ADS  Google Scholar 

  45. G. Rodrigues, C. A. Nunes, P. A. Suzuki, et al., Intermetallics 14, 236 (2006).

    Article  Google Scholar 

  46. G. Frommeyer and R. Rosenkranz, in Metallic Materials with High Structural Efficiency, Ed. by O. N. Senkov, D. B. Miracle, and S. A. Firstov (Kluwer Academic, New York, 2004), p. 287.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-23-00078. The numerical calculations were carried out on the SKIF Cyberia supercomputer at Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bakulin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakova, L.S., Bakulin, A.V. & Kulkova, S.E. Electronic Structure and Mechanical Properties of Ti5Si3. J. Exp. Theor. Phys. 134, 743–753 (2022). https://doi.org/10.1134/S1063776122060061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122060061

Navigation