Skip to main content
Log in

Magnetic Resonance in Metal–Insulator Nanogranular Composites with Paramagnetic Ions in an Insulating Matrix

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The room-temperature magnetic resonance spectra of metal–insulator (CoFeB)x(LiNbO3)100 –x and (CoFeB)x(Al2O3)100 –x nanogranular composite films with various ferromagnetic metallic phase contents x near the percolation threshold are investigated. The systems under study are characterized by a high concentration of paramagnetic ions dispersed in an insulator matrix between ferromagnetic granules. In addition to a usual ferromagnetic resonance signal, these films are found to exhibit an additional absorption peak in weak fields. In contrast to the usual ferromagnetic resonance excited by a transverse high-frequency magnetic field, the additional peak demonstrates a weak dependence of its amplitude on the resonance excitation geometry. The position of this peak depends on the composition of the system, the resonance excitation frequency (f = 7–38 GHz), and the magnetic field orientation with respect to the film plane. This behavior is associated with the paramagnetic resonance of Fe3+ ions, which are present in the insulator matrix and interact with ferromagnetic granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

Notes

  1. The small shift of the absorption peak (~30 Oe) caused by a change in the external field orientation φH can be associated with the presence of a small induced growth anisotropy in the film plane (Fig. 2b). This effect, however, is weak and may be neglected in the future in comparison with the stronger effects under study.

  2. Chosen function (4) has “appropriate” properties, which are characteristic of experimental 4πM(H) dependences: its derivative is 1 at zero field and approaches saturation as 1/Hn – 1 at higher H. At n → ∞, function (4) describes the behavior of an “ideal” FM film with sharp saturation in field HS.

REFERENCES

  1. S. Bedanta, O. Petracic, and W. Kleemann, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 2015), Vol. 23, Chap. 1, p. 1.

    Google Scholar 

  2. V. V. Rylkov, A. V. Emelyanov, S. N. Nikolaev, K. E. Nikiruy, A. V. Sitnikov, E. A. Fadeev, V. A. Demin, and A. B. Granovsky, J. Exp. Theor. Phys. 131, 160 (2020).

    Article  ADS  Google Scholar 

  3. K. B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).

  4. A. B. Drovosekov, N. M. Kreines, A. S. Barkalova, S. N. Nikolaev, V. V. Rylkov, and A. V. Sitnikov, J. Magn. Magn. Mater. 495, 165875 (2020).

  5. A. B. Drovosekov, N. M. Kreines, A. S. Barkalova, S. N. Nikolaev, A. V. Sitnikov, and V. V. Rylkov, JETP Lett. 112, 84 (2020).

    Article  ADS  Google Scholar 

  6. V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M.Yu. Presnyakov, A. N. Taldenkov, A. L. Vasiliev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, and A. S. Bugaev, J. Exp. Theor. Phys. 126, 353 (2018).

    Article  ADS  Google Scholar 

  7. V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).

  8. V. V. Rylkov, A. V. Sitnikov, S. N. Nikolaev, V. A. Demin, A. N. Taldenkov, M. Yu. Presnyakov, A. V. Emelyanov, A. L. Vasiliev, Yu. E. Kalinin, A. S. Bugaev, V. V. Tugushev, and A. B. Granovsky, J. Magn. Magn. Mater. 459, 197 (2018).

    Article  ADS  Google Scholar 

  9. G. D. Bogomolov, Applied Electrodynamics, The School-Book (MFTI, Dolgoprudny, 1979) [in Russian].

  10. A. B. Drovosekov, N. M. Kreines, M. A. Milyaev, L. N. Romashev, and V. V. Ustinov, Phys. Status Solidi C 3, 109 (2006).

    Article  ADS  Google Scholar 

  11. H. H. Wickman, M. P. Klein, and D. A. Shirley, J. Chem. Phys. 42, 2113 (1965).

    Article  ADS  Google Scholar 

  12. T. Castner, Jr., G. S. Newell, W. C. Holton, and C. P. Slichter, J. Chem. Phys. 32, 668 (1960).

    Article  ADS  Google Scholar 

  13. D. L. Griscom, J. Non-Cryst. Sol. 40, 211 (1980).

    Google Scholar 

  14. S. A. Al’tshuler and B. M. Kozyrev, Electron Paramagnetic Resonance of Compounds of Elements of Intermediate Groups (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  15. E. A. Fadeev, M. A. Shakhov, E. Lakhderanta, A. N. Taldenkov, A. L. Vasiliev, A. V. Sitnikov, V. V. Rylikov, and A. B. Granovsky, J. Exp. Theor. Phys. 133, 771 (2021).

    Article  ADS  Google Scholar 

  16. C. D. Fierro-Ruiz, O. Sánchez-Dena, E. M. Cabral-Larquier, J. T. Elizalde-Galindo, and R. Farías, Crystals 8, 108 (2018).

    Article  Google Scholar 

  17. R. Stösser and G. Scholz, Appl. Magn. Reson. 15, 449 (1998).

    Article  Google Scholar 

  18. R. Soohoo, Magnetic Thin Films (Harper and Row, New York, 1965).

    Google Scholar 

Download references

Funding

The work was carried out within the framework of a state assignment and was supported by the Russian Scientific Foundation (project no. 22-29-00392) for studying the magnetic resonance and electrophysical properties of nanocomposite samples and was also supported by the Russian Foundation for Basic Research for the synthesis of nanocomposite films (project no. 19-29-03022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Drovosekov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drovosekov, A.B., Kreines, N.M., Kovalev, O.A. et al. Magnetic Resonance in Metal–Insulator Nanogranular Composites with Paramagnetic Ions in an Insulating Matrix. J. Exp. Theor. Phys. 134, 725–735 (2022). https://doi.org/10.1134/S1063776122060024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122060024

Navigation