Skip to main content
Log in

Detectability of Large Correlation Length Inflationary Magnetic Field with Cherenkov Telescopes

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Magnetic fields occupying the voids of the large scale structure may be a relic from the Early Universe originating from either Inflation or from cosmological phase transitions. We explore the possibility of identifying the inflationary origin of the void magnetic fields and measuring its parameters with γ-ray astronomy methods. The large correlation length inflationary field is expected to impose a characteristic asymmetry of extended γ-ray emission that is correlated between different sources on the sky. We show that a set of nearby blazars for which the extended emission is observable in the 0.1–1 TeV band with CTA can be used for the test of inflationary origin of the void magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. The “analysis caveats” page of Fermi Science Support Center, https://fermi.gsfc.nasa.gov/ssc/data/analysis/caveats.html recommends the use of Fermi/LAT spectra up to 1 TeV, because of the lack of validation of the Instrument Response Functions (IRFs) in the 1–3 TeV energy range. Our comparison of Fermi/LAT and Cherenkov telescope spectra of bright blazars shown in Fig. 6 shows that the Fermi/LAT measurements in this energy range agree with those of other γ-ray telescopes.

REFERENCES

  1. R. Plaga, Nature (London, U.K.) 374, 430 (1995).

    Article  ADS  Google Scholar 

  2. A. Neronov and D. V. Semikoz, JETP Lett. 85, 473 (2007).

    Article  Google Scholar 

  3. A. Neronov and D. Semikoz, Phys. Rev. D 80, 123012 (2009); arXiv: 0910.1920.

    Article  ADS  Google Scholar 

  4. A. Neronov and I. Vovk, Science (Washington, DC, U. S.) 328, 73 (2010); arXiv: 1006.3504.

  5. A. Taylor, I. Vovk, and A. Neronov, Astron. Astrophys. 529, A144 (2011).

    Article  ADS  Google Scholar 

  6. M. Ackermann et al. (Fermi-LAT), Astrophys. J. Suppl. 237, 32 (2018).

  7. A. Korochkin, O. Kalashev, A. Neronov, and D. Semikoz, Astrophys. J. 906, 116 (2021).

  8. I. Vovk, J. Biteau, H. Martínez-Huerta, M. Meyer, and S. Pita (CTA Consortium), PoS ICRC 2021, 894 (2021).

  9. R. Banerjee and K. Jedamzik, Phys. Rev. D 70, 123003 (2004).

    Article  ADS  Google Scholar 

  10. T. Kahniashvili, A. G. Tevzadze, A. Brandenburg, and A. Neronov, Phys. Rev. D 87, 083007 (2013).

    Article  ADS  Google Scholar 

  11. M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743 (1988).

    Article  ADS  Google Scholar 

  12. B. Ratra, Astrophys. J. Lett. 391, L1 (1992).

    Article  ADS  Google Scholar 

  13. W. D. Garretson, G. B. Field, and S. M. Carroll, Phys. Rev. D 46, 5346 (1992).

    Article  ADS  Google Scholar 

  14. A. D. Dolgov, Phys. Rev. D 48, 2499 (1993).

    Article  ADS  Google Scholar 

  15. M. Gasperini, M. Giovannini, and G. Veneziano, Phys. Rev. Lett. 75, 3796 (1995).

    Article  ADS  Google Scholar 

  16. M. Giovannini and M. E. Shaposhnikov, Phys. Rev. D 62, 103512 (2000).

    Article  ADS  Google Scholar 

  17. V. Demozzi, V. Mukhanov, and H. Rubinstein, J. Cosmol. Astropart. Phys., No. 08, 025 (2009).

  18. R. J. Z. Ferreira, R. K. Jain, and M. S. Sloth, J. Cosmol. Astropart. Phys., No. 10, 004 (2013).

  19. R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62 (2013).

    Article  ADS  Google Scholar 

  20. S. Bertone, C. Vogt, and T. Ensslin, Mon. Not. R. Astron. Soc. 370, 319 (2006).

    Article  ADS  Google Scholar 

  21. F. Marinacci, M. Vogelsberger, R. Pakmor, P. Torrey, V. Springel, L. Hernquist, D. Nelson, R. Weinberger, A. Pillepich, J. Naiman, et al., Mon. Not. R. Astron. Soc. 480, 5113 (2018).

  22. K. Bondarenko, A. Boyarsky, A. Korochkin, A. Neronov, D. Semikoz, and A. Sokolenko, arXiv: 2106.02690 (2021).

  23. J. Jasche and B. D. Wandelt, Mon. Not. R. Astron. Soc. 432, 894 (2013).

    Article  ADS  Google Scholar 

  24. R. Teyssier, Astron. Astrophys. 385, 337 (2002).

    Article  ADS  Google Scholar 

  25. V. Berezinsky and O. Kalashev, Phys. Rev. D 94, 023007 (2016).

  26. S. Fromang, P. Hennebelle, and R. Teyssier, in Proceedings of the SF2A-2005: Semaine de l’Astrophysique Francaise (2005), p. 743.

  27. J. Jasche and G. Lavaux, Astron. Astrophys. 625, A64 (2019).

  28. G. Lavaux and M. J. Hudson, Mon. Not. R. Astron. Soc. 416, 2840 (2011); arXiv: 1105.6107.

    Article  ADS  Google Scholar 

  29. O. Hahn and T. Abel, Mon. Not. R. Astron. Soc. 415, 2101 (2011).

    Article  ADS  Google Scholar 

  30. T. Miyoshi and K. Kusano, J. Comput. Phys. 208, 315 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Bondarenko, J. Pradler, and A. Sokolenko, Phys. Lett. B 805, 135420 (2020).

  32. C. R. Evans and J. F. Hawley, Astrophys. J. 332, 659 (1988).

    Article  ADS  Google Scholar 

  33. F. A. Stasyszyn and D. Elstner, J. Comput. Phys. 282, 148 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  34. P. Mocz, R. Pakmor, V. Springel, M. Vogelsberger, F. Marinacci, and L. Hernquist, Mon. Not. R. Astron. Soc. 463, 477 (2016).

  35. A. Franceschini, G. Rodighiero, and M. Vaccari, Astron. Astrophys. 487, 837 (2008).

    Article  ADS  Google Scholar 

  36. A. Neronov, D. Semikoz, M. Kachelriess, S. Ostapchenko, and A. Elyiv, Astrophys. J. Lett. 719, L130 (2010).

    Article  ADS  Google Scholar 

  37. A. A. Abdo et al. (LAT, MAGIC, VERITAS), Astrophys. J. 727, 129 (2011).

    Article  ADS  Google Scholar 

  38. B. e. a. A. Bartoli, Astrophys. J. 758, 2 (2012).

    Article  ADS  Google Scholar 

  39. S. Coutiño de Leon, A. C. Alonso, D. Rosa-Gonzalez, and A. L. Longinotti, in Proceedings of the 36th International Cosmic Ray Conference ICRC'2019 (2019), vol. 36, p. 654.

  40. S. Abdollahi et al. (Fermi-LAT), Astrophys. J. Suppl. 247, 33 (2020).

  41. B. Bartoli et al. (ARGO-YBJ), Astrophys. J. Suppl. 222, 6 (2016).

  42. V. A. Acciari et al., Astrophys. J. 738, 25 (2011).

    Article  ADS  Google Scholar 

  43. A. Neronov, D. V. Semikoz, P. G. Tinyakov, and I. I. Tkachev, Astron. Astrophys. 526, A90 (2011).

    Article  ADS  Google Scholar 

  44. P. da Vela, A. Stamerra, A. Neronov, E. Prandini, Y. Konno, and J. Sitarek, Astropart. Phys. 98, 1 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work of A.N., G.L., M.R., and D.S. has been supported in part by the French National Research Agency (ANR) grant ANR-19-CE31-0020, work of A.K. was supported in part by Russian Science Foundation grant 20-42-09010. A.K.’s stay in the APC laboratory was provided by the “Vernadsky” scholarship of the French embassy in Russia. This work has made use of the Infinity Cluster hosted by Institut d’Astrophysique de Paris. We thank Stéphane Rouberol for running this cluster smoothly for us. This work has been done within the Aquila Consortium (https://www.aquila-consortium.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Semikoz.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

This article was written for the special JETP issue dedicated to centenary of A.E. Chudakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korochkin, A., Neronov, A., Lavaux, G. et al. Detectability of Large Correlation Length Inflationary Magnetic Field with Cherenkov Telescopes. J. Exp. Theor. Phys. 134, 498–505 (2022). https://doi.org/10.1134/S1063776122040057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122040057

Navigation