Skip to main content
Log in

Formation of Self-Energy Singularities by Thermal Fluctuations of the Superconducting Order Parameter

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the structure of the energy dependence of the normal and anomalous self-energy components of the one-particle Green function in the superconducting state, which is calculated with account for charge carrier scattering by thermal fluctuations of electron–hole pairs. Analysis is performed using the self-consistent theory of continual integration based on the quasi-two-dimensional single-band model with attraction between electrons at neighboring sites. Asymptotic expressions for the self-energy components, which coincide in structure with analogous expressions of the phenomenological model of hybridization of electrons with hidden fermionic excitations, are obtained in the average t-matrix approximation. Analysis of the results shows that the energy dependences of both self-energy components have characteristic peaks that suppress each other in the total self-energy at low temperatures. Such a behavior is preserved in the range of anomalously low temperatures and disappears only in the quantum limit for T → 0, in which quantum fluctuations play the decisive role. With increasing temperature, the mutual suppression is replaced by mutual enhancement followed by mutual compensation in the range of temperatures close to the superconducting transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yo. Yamaji, T. Yoshida, A. Fujimori, and M. Imada, arXiv: 1903.08060v4 0[cond-mat.str-el] (2020).

  2. G. M. Eliashberg, Sov. Phys. 11, 696 (1960).

    Google Scholar 

  3. A. B. Migdal, Sov. Phys. 34, 996 (1958).

    MathSciNet  Google Scholar 

  4. Yoichiro Nambu, Phys. Rev. 117, 648 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. E. Hoffman, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Science (Washington, DC, U. S.) 297, 1148 (2002). https://doi.org/10.1126/science.1072640

    Article  ADS  Google Scholar 

  6. A. Damascelli, Z. Hussain, and Zh.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).

    Article  ADS  Google Scholar 

  7. W. L. McMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965).

    Article  ADS  Google Scholar 

  8. J. M. Howell, W. L. McMillan, and W. L. Feldmann, Phys. Rev. B 3, 4065 (1971).

    Article  ADS  Google Scholar 

  9. M. R. Norman, H. Ding, H. Fretwell, M. Randeria, and J. C. Campuzano, Phys. Rev. B 60, 7585 (1999).

    Article  ADS  Google Scholar 

  10. A. V. Chubukov and J. Schmalian, Phys. Rev. B 101, 180510(R) (2020).

  11. T. Kondo, Y. Hamaya, A. D. Palczewski, T. Takeuchi, J. S. Wen, Z. J. Xu, G. Gu, J. Schmalian, and A. Kaminski, Nat. Phys. 7, 21 (2011).

    Article  Google Scholar 

  12. T. Kondo, R. Khasanov, T. Takeuchi, J. Schmalian, and A. Kaminski, Nature (London, U.K.) 457, 296 (2009).

    Article  ADS  Google Scholar 

  13. Sh. Sakai, M. Civelli, Y. Nomura, and M. Imada, Phys. Rev. B 92, 180503(R) (2015).

  14. Sh. Sakai, M. Civelli, and M. Imada, Phys. Rev. Lett. 116, 057003 (2016).

  15. Sh. Sakai, M. Civelli, and M. Imada, Phys. Rev. B 94, 115130 (2016).

  16. A. Abanov, A. V. Chubukov, and J. Schmalian, J. Electron Spectrosc. Relat. Phenom. 117118, 129 (2001).

  17. Yu. A. Izyumov, Adv. Phys. 14, 569 (1965).

    Article  ADS  Google Scholar 

  18. V. J. Emery and S. A. Kivelson, Nature (London, U.K.) 374, 434 (1995).

    Article  ADS  Google Scholar 

  19. D. Bormannt and H. Beck, J. Stat. Phys. 76, 361 (1994).

    Article  ADS  Google Scholar 

  20. A. G. Groshev and A. K. Arzhnikov, J. Exp. Theor. Phys. 130, 247 (2020).

    Article  ADS  Google Scholar 

  21. P. Curty and H. Beck, Phys. Rev. Lett. 85, 796 (2000).

    Article  ADS  Google Scholar 

  22. P. Curty and H. Beck, Phys. Rev. Lett. 91, 257002 (2003).

  23. A. G. Groshev and A. K. Arzhnikov, J. Phys.: Condens. Matter 33, 215604 (2021).

  24. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).

    Article  ADS  Google Scholar 

  25. P. W. Anderson, Science (Washington, DC, U. S.) 235, 1196 (1987).

    Article  ADS  Google Scholar 

  26. D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190(R) (1986).

  27. J. R. Schrieffer, Kh. G. Wen, and S. S. Zhang, Phys. Rev. B 39, 11663 (1989).

    Article  ADS  Google Scholar 

  28. Yu. A. Izyumov, Phys. Usp. 42, 215 (1999).

    Article  Google Scholar 

  29. D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).

    Article  ADS  Google Scholar 

  30. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1136 (1966);

    Article  ADS  Google Scholar 

  31. P. C. Hohenberg, Phys. Rev. 158, 383 (1967);

    Article  ADS  Google Scholar 

  32. S. Coleman, Commun. Math. Phys. 31, 264 (1973).

    Article  ADS  Google Scholar 

  33. G. Su, A. Schadschneider, and J. Zittartz, Phys. Lett. A 230, 99 (1997).

    Article  ADS  Google Scholar 

  34. G. Su and M. Suzuki, Phys. Rev. B 58, 117 (1998).

    Article  ADS  Google Scholar 

  35. V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1970);

    ADS  MathSciNet  Google Scholar 

  36. J. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  37. A. G. Groshev and A. K. Arzhnikov, Europhys. Lett. 102, 57005 (2013).

    Article  ADS  Google Scholar 

  38. A. G. Groshev and A. K. Arzhnikov, J. Phys.: Condens. Matter 30, 185801 (2018).

  39. V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. 74, 3253 (1995).

    Article  ADS  Google Scholar 

  40. T. K. Lee and S. Feng, Phys. Rev. B 41, 11110 (1990).

    Article  ADS  Google Scholar 

  41. M. A. Timirgazin, V. F. Gilmutdinov, and A. K. Arzhnikov, Phys. C (Amsterdam, Neth.) 557, 7 (2019).

Download references

Funding

This study was performed under the State assignment of the Ministry of Higher Education and Science of the Russian Federation (theme no. 121030100005-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Groshev or A. K. Arzhnikov.

Ethics declarations

The authors declare that there is no conflicts of interests.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groshev, A.G., Arzhnikov, A.K. Formation of Self-Energy Singularities by Thermal Fluctuations of the Superconducting Order Parameter. J. Exp. Theor. Phys. 134, 305–313 (2022). https://doi.org/10.1134/S1063776122030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122030050

Navigation