Skip to main content
Log in

Activated Hopping Transport in Nematic Conducting Aerogels

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The transport properties of nematic aerogels, which consist of highly oriented Al2O3⋅SiO2 nanofibers coated with a graphene shell with a large number of defects, are studied. The temperature dependences of the electrical resistivity in the range of 9–40 K strictly follow the formula derived to describe the variable range hopping (VRH) conductivity, in which exponent α changes from 0.4 to 0.9 when the number of layers in the graphene shell decreases from 4–6 to 1–2. The dependence of α on the shell thickness can be explained by a simultaneous change in the dimension of hopping transport and the character of the energy dependence of the density of localized states near the Fermi level. The fact that α approaches unity at the minimum graphene shell thickness indicates a gradual transition from VRH transport to nearest neighbor hopping (NNH) transport. The magnetoresistance measured at T = 4.2 K is negative, increases significantly with decreasing graphene shell thickness, and is approximated by a formula for the case of weak localization with a good accuracy. The phase coherence lengths are in a reasonable relation with the graphene grain sizes. The conducting aerogels under study complement the well-known set of materials that exhibit hopping electron transport at low temperatures, which is characteristic of media with strong carrier localization, and also a negative magnetoresistance, which usually manifests itself under weak localization conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. The case α = 1/2 is known to be not only a one-dimensional version of Eq. (4), but above all to be the result of appearance of a Coulomb gap near the Fermi level due to electron–electron interaction regardless of the dimensionality (Shklovskii–Efros law [14]).

  2. In this regard, work [20] (mentioned above), where α increased from 0.25 to 1 when the volume fraction of a PANI network in a PMMA matrix decreased, is noteworthy. In addition, according to [23], a certain set of α values was observed in a series of polycrystalline graphene samples.

  3. Another carbon system, namely, so-called carbynes, should be mentioned here; they are supposed to consist of chains of carbon atoms with the sp bonds. Hopping conduction with α= 1/2, 1/3, and 1/4 is observed in carbyne samples depending on the synthesis temperature, and the case of α = 1/2 is explained by a one-dimensional character of hopping transport rather than by the presence of a Coulomb gap (see [43] and Refs. therein).

REFERENCES

  1. M. Aghayan, I. Hussainova, M. Gasik, et al., Thermochim. Acta 574, 140 (2013).

    Article  Google Scholar 

  2. V. E. Asadchikov, R. Sh. Askhadullin, V. V. Volkov, V. V. Dmitriev, N. K. Kitaeva, P. N. Martynov, A. A. Osipov, A. A. Senin, A. A. Soldatov, D. I. Chekrygina, and A. N. Yudin, JETP Lett. 101, 556 (2015).

    Article  ADS  Google Scholar 

  3. V. V. Dmitriev, A. A. Senin, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 115, 165304 (2015).

  4. S. Autti, V. V. Dmitriev, J. T. Mäkinen, et al., Phys. Rev. Lett. 117, 255301 (2016).

  5. http://www.anftechnology.com/nafen.

  6. I. Hussainova, R. Ivanov, S. N. Stamatin, et al., Carbon 88, 157 (2015).

    Article  Google Scholar 

  7. R. Ivanov, V. Mikli, J. Kübarsepp, and I. Hussainova, Key Eng. Mater. 674, 77 (2016).

    Article  Google Scholar 

  8. V. S. Solodovnichenko, M. M. Simunin, D. V. Lebedev, et al., Thermochim. Acta 675, 164 (2019).

    Article  Google Scholar 

  9. M. Mehbod, P. Wyder, R. Deltour, et al., Phys. Rev. B 36, 7627 (1987).

    Article  ADS  Google Scholar 

  10. D. van der Putten, J. T. Moonen, H. B. Brom, et al., Phys. Rev. Lett. 69, 494 (1992).

    Article  ADS  Google Scholar 

  11. A. W. P. Fung, Z. H. Wang, M. S. Dresselhaus, et al., Phys. Rev. B 49, 17325 (1994).

    Article  ADS  Google Scholar 

  12. G. A. M. Reynolds, A. W. P. Fung, Z. H. Wang, et al., Phys. Rev. B 50, 18590 (1994).

    Article  ADS  Google Scholar 

  13. P. Mandal, A. Neumann, A. G. M. Jansen, et al., Phys. Rev. B 55, 452 (1997).

    Article  ADS  Google Scholar 

  14. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984; Nauka, Moscow, 1979).

  15. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, Vol. 45 of Springer Series in Solid-State Sciences (Springer, Berlin, 1984).

  16. R. M. Hill, Phys. Status Solidi A 35, K29 (1976).

    Article  ADS  Google Scholar 

  17. A. G. Zabrodskii, Sov. Phys. Semicond. 11, 345 (1977).

    Google Scholar 

  18. M. Pollak, J. Non-Cryst. Solids 11, 1 (1972).

    Article  ADS  Google Scholar 

  19. E. M. Hamilton, Philos. Mag. 29, 1043 (1972).

    Article  ADS  Google Scholar 

  20. M. Reghu, C. O. Yoon, C. Y. Yang, et al., Phys. Rev. B 50, 13931 (1994).

    Article  ADS  Google Scholar 

  21. C. O. Yoon, M. Reghu, D. Moses, et al., Synt. Met. 75, 229 (1995).

    Article  Google Scholar 

  22. A. N. Aleshin, J. Y. Lee, S. W. Chu, et al., Phys. Rev. B 69, 214203 (2004).

  23. J. Park, W. C. Mitchel, S. Elhamri, et al., Phys. Rev. B 88, 035419 (2013).

  24. Y.-E. Lévy and B. Souillard, Europhys. Lett. 4, 233 (1987).

    Article  ADS  Google Scholar 

  25. G. Deutscher, Y. Lévy, and B. Souillard, Europhys. Lett. 4, 577 (1987).

    Article  ADS  Google Scholar 

  26. M. M. Fogler, S. Teber, and B. I. Shklovskii, Phys. Rev. B 69, 035413 (2004).

  27. A. B. Kaiser, Rep. Prog. Phys. 64, 1 (2001).

    Article  ADS  Google Scholar 

  28. M. Pollak and C. J. Adkins, Philos. Mag., B 65, 855 (1992).

    Article  ADS  Google Scholar 

  29. A. M. Nardes, M. Kemerink, and R. A. J. Janssen, Phys. Rev. B 76, 085208 (2007).

  30. S. Ihnatsenka, Phys. Rev. B 94, 195202 (2016).

  31. R. Saito, M. Hofmann, G. Dresselhaus, et al., Adv. Phys. 60, 413 (2011).

    Article  ADS  Google Scholar 

  32. E. H. Martins Ferreira, M. V. O. Moutinho, F. Stavale, et al., Phys. Rev. B 82, 125429 (2010).

  33. M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, et al., Carbon 48, 1592 (2010).

    Article  Google Scholar 

  34. M. S. Dresselhaus, A. Jorio, A. G. Souza Filho, and R. Saito, Phil. Trans. R. Soc. London, Ser. A 368, 5355 (2010).

    ADS  Google Scholar 

  35. A. Eckmann, A. Felten, A. Mishchenko, et al., Nano Lett. 12, 3925 (2012).

    Article  ADS  Google Scholar 

  36. L. G. Cancado, K. Takai, T. Enoki, et al., Appl. Phys. Lett. 88, 163106 (2006).

  37. L. G. Cancado, A. Jorio, E. H. Martins Ferreira, et al., Nano Lett. 11, 3190 (2011).

    Article  ADS  Google Scholar 

  38. L. B. Lugansky and V. I. Tsebro, Instrum. Exp. Tech. 58, 118 (2015).

    Article  Google Scholar 

  39. P. Schnabel, Phil. Res. Rep. 19, 43 (1964).

    MathSciNet  Google Scholar 

  40. P. Schnabel, Z. Angew. Phys. 22, 136 (1967).

    Google Scholar 

  41. A. G. Zabrodskii and K. N. Zinov’eva, Sov. Phys. JETP 59, 425 (1984).

    ADS  Google Scholar 

  42. K. Ritter and J. Lyding, Nat. Mater. 8, 235 (2009).

    Article  ADS  Google Scholar 

  43. S. V. Demishev, A. A. Pronin, V. V. Glushkov, N. E. Sluchanko, N. A. Samarin, M. V. Kondrin, A. G. Lyapin, V. V. Brazhkin, T. D. Varfolomeeva, and S. V. Popova, JETP Lett. 78, 511 (2003).

    Article  ADS  Google Scholar 

  44. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  45. H. W. Jiang, C. E. Johnson, and K. L. Wang, Phys. Rev. B 46, 12830 (1992).

    Article  ADS  Google Scholar 

  46. G. M. Minkov, O. E. Rut, A. V. Germanenko, et al., Phys. Rev. B 65, 235322 (2002).

  47. V. F. Mitin, V. K. Dugaev, and G. G. Ihas, Appl. Phys. Lett. 91, 202107 (2007).

  48. X. Hong, S. H. Cheng, C. Herding, and J. Zhu, Phys. Rev. B 83, 085410 (2011).

  49. F. P. Milliken and Z. Ovadyahu, Phys. Rev. Lett. 65, 911 (1990).

    Article  ADS  Google Scholar 

  50. A. Frydman and Z. Ovadyahu, Solid State Commun. 94, 745 (1995).

    Article  ADS  Google Scholar 

  51. Y. Wang and J. J. Santiago-Avilés, Appl. Phys. Lett. 89, 123119 (2006).

  52. X. Wang, W. Gao, X. Li, et al., Phys. Rev. Mater. 2, 116001 (2018).

  53. V. L. Nguen, B. Z. Spivak, and B. I. Shklovskii, Sov. Phys. JETP 62, 1021 (1985).

    ADS  Google Scholar 

  54. U. Sivan, O. Entin-Wohlman, and Y. Imry, Phys. Rev. Lett. 60, 1566 (1988).

    Article  ADS  Google Scholar 

  55. O. Entin-Wohlman, Y. Imry, and U. Sivan, Phys. Rev. B 40, 8342 (1989).

    Article  ADS  Google Scholar 

  56. L. B. Ioffe and B. Z. Spivak, J. Exp. Theor. Phys. 117, 551 (2013).

    Article  ADS  Google Scholar 

  57. R. Tarkiainen, M. Ahlskog, A. Zyuzin et al., Phys. Rev. B 69, 033402 (2004).

  58. L. B. Lugansky and V. I. Tsebro, Four-Probe Methods for Measuring Resistivity (RIIS FIAN, Moscow, 2012) [in Russian].

    Google Scholar 

  59. L. J. van der Pauw, Philips Res. Rep. 16, 187 (1961).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. RNF-20-42-08004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Tsebro or E. G. Nikolaev.

Additional information

Translated by K. Shakhlevich

APPENDIX

APPENDIX

In the Schnabel method, two measurement methods are possible. In the first Schnabel geometry, an electric current is supplied to contacts A and D and potential difference VBC between contacts B and C is measured (see the designations of the contacts in the left part of Fig. 5). In the second Schnabel geometry, the current flows through contacts A and B and potential difference VCD is measured between contacts C and D. From such measurements, conventional resistances R1 = VBC/IAD and R2 = VCD/IAB are determined. VBC and VCD can be analytically expressed by solving the problem of the electric field potential distribution in the sample volume when current I passes through the current contacts.

In Schnabel’s original works [39, 40], this problem was solved for a sample in the shape of an infinite flat plate, where only two geometric parameters, namely, plate thickness d and the distance between neighboring contacts s, were present, and in the shape of an infinite strip, where another geometric parameter, namely, strip width b, was added.

In our works [38, 58], a solution to this problem was found for samples having the shape of a rectangular parallelepiped of finite dimensions. R1 and R2 were shown to be represented as

$${{R}_{1}} = \frac{\rho }{d}G(a,b,d,s),\quad {{R}_{2}} = \frac{\rho }{d}H(a,b,d,s),$$

where ρ is the electrical resistivity of the conducting medium; a, b, and d are the sample sizes along the principal axes; and s is the distance between contacts AB and CD, respectively. Functions G and H are analytically expressed in the form of double infinite series [38, 58]. In the case of an isotropic sample, resistivity ρ can be found from any one of these measurements (either from R1 or R2).

In an anisotropic case, van der Pauw [59] showed that a simple linear transformation of coordinates can be used to reduce the problem of potential distribution in an anisotropic sample to a similar problem for a hypothetical isotropic sample with different sizes and electrical resistivity. Here, we briefly present the main final calculations concerning the case of the anisotropic nematic aerogel samples studied in this work.

The coordinate system is assumed to be chosen so that the edges of the bulk aerogel samples are along the principal axes of the resistivity tensor, taken as axes (x1, x2, x3), and segments AB and CD are assumed to be parallel to axis x1 along aerogel nanofibers (Fig. 5). In this coordinate system, tensor ρik is diagonal and has only three components (ρ1, ρ2, ρ3). The coefficients of the linear coordinate transformation are chosen so that the electrical resistivity ρ* of the isotropic image and sizes a*, b*, of the isotropic image and c* are

$$\rho \text{*} = {{({{\rho }_{1}}{{\rho }_{2}}{{\rho }_{3}})}^{{1/3}}},$$
$$a\text{*} = {{({{\rho }_{1}}{\text{/}}\rho \text{*})}^{{1/2}}}a,\quad b\text{*} = {{({{\rho }_{2}}{\text{/}}\rho \text{*})}^{{1/2}}}b,$$
$$d\text{*} = {{({{\rho }_{3}}{\text{/}}\rho \text{*})}^{{1/2}}}d,\quad s\text{*} = {{({{\rho }_{1}}{\text{/}}\rho \text{*})}^{{1/2}}}.$$

Here superscript * denotes the quantity related to the isotropic image of a real anisotropic sample. In this case, measured resistances R1 and R2 of the anisotropic sample under study are equal to the corresponding resistances of its hypothetical isotropic image, \(R_{1}^{*}\) and \(R_{2}^{*}\).

As is seen from the analytical formulas for functions G and H (see [38, 58]), they actually depend on three rather than four (a, b, d, s) arguments; it is convenient to represent these three arguments as ratios (a/s, b/s, d/s) for the sample under study and (a*/s*, b*/s*, d*/s*) for its isotropic image. Then resistances R1 and R2 to be measured can be written as

$$\begin{gathered} {{R}_{1}} = R_{1}^{*} = \frac{{\rho {\text{*}}}}{{d{\text{*}}}}G\left( {\frac{{a{\text{*}}}}{{s{\text{*}}}},\frac{{b{\text{*}}}}{{s{\text{*}}}},\frac{{d{\text{*}}}}{{s{\text{*}}}}} \right) \\ = \frac{{{{{({{\rho }_{1}}{{\rho }_{2}})}}^{{1/2}}}}}{d}G\left( {\frac{a}{s},\frac{{{{\lambda }_{{21}}}b}}{s},\frac{{{{\lambda }_{{31}}}d}}{s}} \right), \\ \end{gathered} $$
$$\begin{gathered} {{R}_{2}} = R_{2}^{*} = \frac{{\rho {\text{*}}}}{{d{\text{*}}}}H\left( {\frac{{a{\text{*}}}}{{s{\text{*}}}},\frac{{b{\text{*}}}}{{s{\text{*}}}},\frac{{d{\text{*}}}}{{s{\text{*}}}}} \right) \\ = \frac{{{{{({{\rho }_{1}}{{\rho }_{2}})}}^{{1/2}}}}}{d}H\left( {\frac{a}{s},\frac{{{{\lambda }_{{21}}}b}}{s},\frac{{{{\lambda }_{{31}}}d}}{s}} \right), \\ \end{gathered} $$

where the designations λ21 = (ρ21)1/2 and λ31 = (ρ31)1/2 are introduced.

Only two quantities, namely, R1 and R2, are independent during measurements. Therefore, it is impossible to determine all three values of the resistivity tensor from these measurements. However, if two of the three principal values of the resistivity tensor are the same (as in our case of bulk nematic aerogel samples), then it has only two independent principal values, which can be found by measuring R1 and R2. Note that, in our experiments on bulk aerogel samples, the lines along which the AB and CD probes are located are directed along the highest conductivity direction, which is taken as axis x1 with electrical resistivity ρ1 (see Fig. 5), and the electrical resistivities along other two axes are taken to be the same, i.e., ρ2 = ρ3 and λ21 = λ31.

Knowing the analytical expressions for functions G and H [38, 58], the sample sizes (a, b, d), and the distance between point contacts s, we can construct the ratio

$$\frac{{{{R}_{1}}}}{{{{R}_{2}}}} = \frac{{G(a{\text{/}}s,\lambda b{\text{/}}s,\lambda d{\text{/}}s)}}{{H(a{\text{/}}s,\lambda b{\text{/}}s,\lambda d{\text{/}}s)}}$$

as a function of only one argument λ = λ21 = λ31. For each measurement of R1 and R2, this dependence is used to determine anisotropy parameter λ, and ρ1 is then calculated by the formula

$${{\rho }_{1}} = \frac{{{{R}_{1}}d}}{{\lambda G(a{\text{/}}s,\lambda b{\text{/}}s,\lambda d{\text{/}}s)}}$$

or

$${{\rho }_{1}} = \frac{{{{R}_{2}}d}}{{\lambda H(a{\text{/}}s,\lambda b{\text{/}}s,\lambda d{\text{/}}s)}}.$$

Finally, we find ρ3 = ρ1λ2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsebro, V.I., Nikolaev, E.G., Lugansky, L.B. et al. Activated Hopping Transport in Nematic Conducting Aerogels. J. Exp. Theor. Phys. 134, 222–234 (2022). https://doi.org/10.1134/S106377612202008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612202008X

Navigation