Skip to main content
Log in

Auger Transitions in a Quasi-Molecule in Collisions of Neon Atoms in the Kiloelectonvolt Energy Range

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have calculated the probabilities of Auger decay of a vacancy on the 2pπ orbital in the Ne+–Ne quasi-molecule, which is a short-lived structure formed during the collision of a neon ion and an atom and decays during their flying apart in the collision energy range 3–50 keV. The results of calculations correlate with available experimental data on the electron emission spectra. We have determined the dominating Auger decay channels depending on the collision energy. It is shown that with increasing collision energy, substantial ionization and excitation of the quasi-molecule occur, which leads to a considerable increase in the Auger transitions probability in the quasi-molecule. We have proposed a scaling for estimating the Auger transition probability upon a change in the degree of ionization of particles and the procedure for reconstructing the quasi-molecule energy level in the conditions of strong dependence of the Auger transition probability on the internuclear distance. The dependence of the total (summed over all possible channel) probability of the decay of the 2pπ vacancy on the collision conditions has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. V. Afrosimov, Yu. S. Gordeev, A. N. Zinov’ev, et al., JETP Lett. 24, 28 (1976).

    ADS  Google Scholar 

  2. V. V. Afrosimov, G. G. Meskhi, N. N. Tsarev, and A. P. Shergin, Sov. Phys. JETP 57, 263 (1983).

    ADS  Google Scholar 

  3. A. Z. Devdariani, V. N. Ostrovskii, and Yu. N. Sebyakin, Sov. Phys. JETP 46, 215 (1977).

    ADS  Google Scholar 

  4. J. Eichler, U. Wille, B. Fastrup, et al., Phys. Rev. A 14, 707 (1976).

    Article  ADS  Google Scholar 

  5. V. K. Nikulin and N. A. Guschina, J. Phys. B 11, 3553 (1978).

    Article  ADS  Google Scholar 

  6. B. Fricke and W.-D. Sepp, J. Phys. B 14, L549 (1981).

    Article  ADS  Google Scholar 

  7. V. V. Afrosimov, G. G. Meskhi, N. N. Tsarev, and A. P. Shergin, JETP Lett. 31, 688 (1980).

    ADS  Google Scholar 

  8. V. R. Asatryan and A. P. Shergin, JETP Lett. 44, 584 (1986).

    ADS  Google Scholar 

  9. L. M. Kishinevskii and E. S. Parilis, Sov. Phys. JETP 28, 1020 (1968).

    ADS  Google Scholar 

  10. L. M. Kishinevsky, B. G. Krakov, and E. S. Parilis, Phys. Lett. A 85, 141 (1981).

    Article  ADS  Google Scholar 

  11. E. J. McGuire, Phys. Rev. A 3, 587 (1971).

    Article  ADS  Google Scholar 

  12. V. Sidis, J. Phys. B 6, 1188 (1973).

    Article  ADS  Google Scholar 

  13. E. A. Solov’ev, New Approaches in Quantum Physics (Fizmatlit, Moscow, 2019) [in Russian].

    Google Scholar 

  14. G. N. Ogurtsov, V. M. Mikoushkin, S. Yu. Ovchinnikov, et al., Phys. Rev. A 74, 042720 (2006).

    Article  ADS  Google Scholar 

  15. S. Yu. Ovchinnikov, J. H. Macek, and V. M. Mikoushkin, Phys. Rev. A 84, 032706 (2011).

    Article  ADS  Google Scholar 

  16. J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. Lett. 104, 033201 (2010).

    Article  ADS  Google Scholar 

  17. L. Ph. H. Schmidt, C. Goil, D. Metz, et al., Phys. Rev. Lett. 112, 083201 (2014).

    Article  ADS  Google Scholar 

  18. A. N. Zinoviev, P. Yu. Babenko, and A. P. Shergin, J. Exp. Theor. Phys. 132, 45 (2021).

    Article  ADS  Google Scholar 

  19. J. Eichler and U. Wille, Phys. Rev. A 11, 1973 (1975).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977).

  21. W. Bambynek, B. Crasemann, and R. W. Fink, Rev. Mod. Phys. 44, 716 (1972).

    Article  ADS  Google Scholar 

  22. Q. C. Kessel, M. P. McCaughey, and E. Everhart, Phys. Rev. 153, 57 (1967).

    Article  ADS  Google Scholar 

  23. E. N. Fuls, P. R. Jones, F. P. Ziemba, et al., Phys. Rev. 107, 704 (1957).

    Article  ADS  Google Scholar 

  24. P. R. Jones, P. Costigan, and G. van Dyk, Phys. Rev. 129, 211 (1963).

    Article  ADS  Google Scholar 

  25. D. J. Bierman and W. C. Turkenburg, Physica (Amsterdam, Neth.) 67, 533 (1973).

  26. A. N. Zinov’ev, Tech. Phys. 53, 13 (2008).

    Article  Google Scholar 

  27. A. N. Zinoviev and K. Nordlund, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 511 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zinoviev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, V.S., Babenko, P.Y., Shergin, A.P. et al. Auger Transitions in a Quasi-Molecule in Collisions of Neon Atoms in the Kiloelectonvolt Energy Range. J. Exp. Theor. Phys. 133, 675–686 (2021). https://doi.org/10.1134/S1063776121120128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121120128

Navigation