Skip to main content
Log in

Precritical Thermoacoustics in Helium

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Evolution of the fundamental mode of acoustic oscillations in a cavity filled with gaseous helium has been studied during immersion of this resonator into a helium transport Dewar vessel. Critical behavior of the parameter of oscillation decay has been observed on approaching the level below which thermoacoustic instability arises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Note, however, that even the exact solution [13] was obtained under significant simplifications–in particular, with neglect of the viscosity-induced thermal effects and density gradient related to the pressure drop necessary for ensuring the laminar flow.

  2. In case of the onset of convection, the frequency is unchanged and remains equal to zero [16].

  3. Preliminarily, the linearity of oscillations depending on the amplitude of excitation was checked; the phase difference of signals from the resonator ends amounted to 180°.

  4. This behavior indicates that the bifurcation proceeds in “hard” (yet close to soft) regime of self-excitation. For a final conclusion, it is obviously necessary to follow the dynamics of bifurcation development at better temporal resolution.

REFERENCES

  1. C. Sondhauss, Ann. Phys. Chem. 79, 1 (1850).

    Article  ADS  Google Scholar 

  2. W. H. Keesom, Helium (Elsevier, Amsterdam, 1942), p. 174.

    Google Scholar 

  3. C. J. Lawn and G. Peneelet, Int. J. Spray Combust. Dyn. 10, 3 (2018).

    Article  Google Scholar 

  4. N. Dittmar, S. Kloeppel, Ch. Haberstroh, et al., Phys. Proc. 67, 348 (2015).

    Article  ADS  Google Scholar 

  5. W. Stautner, R. Chen, M. Xu, et al., IOP Conf. Ser.: Mater. Sci. Eng. 101, 012038 (2015).

  6. J. R. Clement and J. Gaffney, Adv. Cryog. Eng. 1, 302 (1954).

    Google Scholar 

  7. J. Gaffney and J. R. Clement, Rev. Sci. Instrum. 26, 620 (1955).

    Article  ADS  Google Scholar 

  8. T. von Hoffmann, U. Lienert, and H. Quack, Cryogenics 13, 400 (1973).

    Article  Google Scholar 

  9. T. Yazaki, A. Tominaga, and Y. Narahara, Cryogenics 19, 393 (1979).

    Article  ADS  Google Scholar 

  10. T. Yazaki, A. Tominaga, and Y. Narahara, J. Low Temp. Phys. 41, 45 (1980).

    Article  ADS  Google Scholar 

  11. Y. Gu and K. D. Timmerhaus, Adv. Cryog. Eng. 39, 1733 (1994).

    Article  Google Scholar 

  12. N. Rott, Adv. Appl. Mech. 20, 135 (1980).

    Article  ADS  Google Scholar 

  13. C. C. Lin, The Theory of Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 1955).

    MATH  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

  15. L. D. Landau, Dokl. Akad. Nauk 44, 339 (1944).

    Google Scholar 

  16. L. P. Gor’kov, Sov. Phys. JETP 6, 311 (1957).

    ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1973; Pergamon, New York, 1988).

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.F. Andreev, S.T. Boldarev, E.A. Brener, I.K. Butkevich, R.B. Gusev, V.V. Dmitriev, L.A. Mel’nikovskii, V.V. Sirenev, A.I. Smirnov, and I.N. Khlyustikov for fruitful discussions, support, and useful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Marchenko.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshishev, K.O., Marchenko, V.I. & Podolyak, E.R. Precritical Thermoacoustics in Helium. J. Exp. Theor. Phys. 133, 786–791 (2021). https://doi.org/10.1134/S1063776121120104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121120104

Navigation