Skip to main content
Log in

Bubbles with Attached Quantum Vortices in Trapped Binary Bose–Einstein Condensates

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Specific topological excitations of energetically stable “core-and-mantle” configurations of trapped two-component immiscible Bose–Einstein condensates are studied numerically within the coupled Gross–Pitaevskii equations. Nonstationary long-lived coherent structures, that consist of several quantum vortex filaments penetrating the “mantle” from outside to inside and vice versa and demonstrate quite nontrivial dynamics, are observed in simulations for the first time. The ends of filaments can remain attached to the interface between the “mantle” and the “core” if the latter is large enough while the surface tension is not small. The shapes of such “bubbles” are strongly affected by the vortices and sometimes are far from being spherical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Tin-Lun Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).

    Article  ADS  Google Scholar 

  2. H. Pu and N. P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).

    Article  ADS  Google Scholar 

  3. B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).

    Article  ADS  Google Scholar 

  4. S. Coen and M. Haelterman, Phys. Rev. Lett. 87, 140401 (2001).

    Article  ADS  Google Scholar 

  5. G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).

    Article  ADS  Google Scholar 

  6. J. P. Burke, Jr., J. L. Bohn, B. D. Esry, and C. H. Greene, Phys. Rev. Lett. 80, 2097 (1998).

    Article  ADS  Google Scholar 

  7. G. Thalhammer, G. Barontini, L. de Sarlo, J. Catani, F. Minardi, and M. Inguscio, Phys. Rev. Lett. 100, 210402 (2008).

    Article  ADS  Google Scholar 

  8. S. B. Papp, J. M. Pino, and C. E. Wieman, Phys. Rev. Lett. 101, 040402 (2008).

    Article  ADS  Google Scholar 

  9. S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, and T. Hirano, Phys. Rev. A 82, 033609 (2010).

    Article  ADS  Google Scholar 

  10. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).

    Article  ADS  Google Scholar 

  11. E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998).

    Article  ADS  Google Scholar 

  12. P. Ao and S. T. Chui, Phys. Rev. A 58, 4836 (1998).

    Article  ADS  Google Scholar 

  13. B. van Schaeybroeck, Phys. Rev. A 78, 023624 (2008).

    Article  ADS  Google Scholar 

  14. A. A. Svidzinsky and S. T. Chui, Phys. Rev. A 68, 013612 (2003).

    Article  ADS  Google Scholar 

  15. S. Gautam and D. Angom, J. Phys. B: At. Mol. Opt. Phys. 43, 095302 (2010).

    Article  ADS  Google Scholar 

  16. R. W. Pattinson, T. P. Billam, S. A. Gardiner, D. J. McCarron, H. W. Cho, S. L. Cornish, N. G. Parker, and N. P. Proukakis, Phys. Rev. A 87, 013625 (2013).

    Article  ADS  Google Scholar 

  17. K. Suthar, A. Roy, and D. Angom, Phys. Rev. A 91, 043615 (2015).

    Article  ADS  Google Scholar 

  18. K. Suthar and D. Angom, Phys. Rev. A 93, 063608 (2016).

    Article  ADS  Google Scholar 

  19. K. Suthar and D. Angom, Phys. Rev. A 95, 043602 (2017).

    Article  ADS  Google Scholar 

  20. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 033602 (2011).

    Article  ADS  Google Scholar 

  21. H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, and M. Tsubota, Phys. Rev. B 81, 094517 (2010).

    Article  ADS  Google Scholar 

  22. N. Suzuki, H. Takeuchi, K. Kasamatsu, M. Tsubota, and H. Saito, Phys. Rev. A 82, 063604 (2010).

    Article  ADS  Google Scholar 

  23. K. Sasaki, N. Suzuki, D. Akamatsu, and H. Saito, Phys. Rev. A 80, 063611 (2009).

    Article  ADS  Google Scholar 

  24. S. Gautam and D. Angom, Phys. Rev. A 81, 053616 (2010).

    Article  ADS  Google Scholar 

  25. T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto, and H. Saito, Phys. Rev. A 85, 013602 (2012).

    Article  ADS  Google Scholar 

  26. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 053606 (2011).

    Article  ADS  Google Scholar 

  27. D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, and M. Marklund, Phys. Rev. A 86, 023614 (2012).

    Article  ADS  Google Scholar 

  28. D. K. Maity, K. Mukherjee, S. I. Mistakidis, S. Das, P. G. Kevrekidis, S. Majumder, and P. Schmelcher, Phys. Rev. A 102, 033320 (2020).

    Article  ADS  Google Scholar 

  29. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91, 150406 (2003).

    Article  ADS  Google Scholar 

  30. K. Kasamatsu and M. Tsubota, Phys. Rev. A 79, 023606 (2009).

    Article  ADS  Google Scholar 

  31. P. Mason and A. Aftalion, Phys. Rev. A 84, 033611 (2011).

    Article  ADS  Google Scholar 

  32. K. J. H. Law, P. G. Kevrekidis, and L. S. Tuckerman, Phys. Rev. Lett. 105, 160405 (2010);

    Article  ADS  Google Scholar 

  33. Phys. Rev. Lett. 106, 199903(E) (2011).

  34. M. Pola, J. Stockhofe, P. Schmelcher, and P. G. Kevrekidis, Phys. Rev. A 86, 053601 (2012).

    Article  ADS  Google Scholar 

  35. S. Hayashi, M. Tsubota, and H. Takeuchi, Phys. Rev. A 87, 063628 (2013).

    Article  ADS  Google Scholar 

  36. A. Richaud, V. Penna, R. Mayol, and M. Guilleumas, Phys. Rev. A 101, 013630 (2020).

    Article  ADS  Google Scholar 

  37. A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021).

    Article  ADS  Google Scholar 

  38. V. P. Ruban, JETP Lett. 113, 532 (2021).

    Article  ADS  Google Scholar 

  39. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 93, 250406 (2004).

    Article  ADS  Google Scholar 

  40. H. Takeuchi, K. Kasamatsu, M. Tsubota, and M. Nitta, Phys. Rev. Lett. 109, 245301 (2012).

    Article  ADS  Google Scholar 

  41. M. Nitta, K. Kasamatsu, M. Tsubota, and H. Takeuchi, Phys. Rev. A 85, 053639 (2012).

    Article  ADS  Google Scholar 

  42. K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Phys. Rev. A 88, 013620 (2013).

    Article  ADS  Google Scholar 

  43. S. B. Gudnason and M. Nitta, Phys. Rev. D 98, 125002 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  44. V. P. Ruban, JETP Lett. 113, 814 (2021).

  45. C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  46. L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford Univ. Press, Oxford, 2003).

    MATH  Google Scholar 

  47. A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).

    Article  ADS  Google Scholar 

  48. A. A. Svidzinsky and A. L. Fetter, Phys. Rev. A 62, 063617 (2000).

    Article  ADS  Google Scholar 

  49. V. P. Ruban, Phys. Rev. E 64, 036305 (2001).

    Article  ADS  Google Scholar 

  50. A. Aftalion and I. Danaila, Phys. Rev. A 68, 023603 (2003).

    Article  ADS  Google Scholar 

  51. T.-L. Horng, S.-C. Gou, and T.-C. Lin, Phys. Rev. A 74, 041603(R) (2006).

  52. S. Serafini, L. Galantucci, E. Iseni, T. Bienaime, R. N. Bisset, C. F. Barenghi, F. Dalfovo, G. Lamporesi, and G. Ferrari, Phys. Rev. X 7, 021031 (2017).

    Google Scholar 

  53. C. Ticknor, W. Wang, and P. G. Kevrekidis, Phys. Rev. A 98, 033609 (2018).

    Article  ADS  Google Scholar 

  54. V. P. Ruban, JETP Lett. 108, 605 (2018).

    Article  ADS  Google Scholar 

  55. C. Ticknor, V. P. Ruban, and P. G. Kevrekidis, Phys. Rev. A 99, 063604 (2019).

    Article  ADS  Google Scholar 

  56. K. Padavić, K. Sun, C. Lannert, and S. Vishveshwara, Phys. Rev. A 102, 043305 (2020).

    Article  ADS  Google Scholar 

  57. N. Chamel and P. Haensel, Liv. Rev. Relat. 11, 10 (2008).

    Article  Google Scholar 

  58. G. E. Volovik, Proc. Natl. Acad. Sci. U. S. A. 97, 2431 (2000).

    Article  ADS  Google Scholar 

  59. http://home.itp.ac.ru/~ruban/12APR2021/v1.avi.

  60. http://home.itp.ac.ru/~ruban/12APR2021/v2.avi.

  61. http://home.itp.ac.ru/~ruban/12APR2021/v3.avi.

  62. http://home.itp.ac.ru/~ruban/12APR2021/v4.avi.

  63. http://home.itp.ac.ru/~ruban/12APR2021/v5.avi.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ruban.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruban, V.P. Bubbles with Attached Quantum Vortices in Trapped Binary Bose–Einstein Condensates. J. Exp. Theor. Phys. 133, 779–785 (2021). https://doi.org/10.1134/S1063776121120062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121120062

Navigation