Skip to main content
Log in

Dynamical Stability of Gravastars Covered with ABG Black Holes

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to constructing the geometry of thin-shell gravastars from the joining of inner de Sitter and outer Ayón-Beato García (de Sitter) black hole. We use cut and paste technique to match these spacetimes at thin-shell. The presence of thin layer of matter at thin-shell plays a vital role to explain dynamics and stability of gravastars. It is evaluated that the physical features such as proper length, entropy and shell’s energy contents are proportional to the thickness of shell’s region. The stability of gravastars is explored by using linearized radial perturbation and barotropic equation of state. It is found that stable regions of Ayón-Beato and García–de Sitter black hole are greater than Ayón-Beato and Garcia as well as Schwarzschild black holes. We conclude that thin-shell gravastar becomes more stable if the shell radius is less than the expected event horizon for the barotropic equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. P. Mazur and E. Mottola, arXiv: gr-qc/0109035; Proc. Natl. Acad. Sci. U. S. A. 101, 9545 (2004).

    Article  ADS  Google Scholar 

  2. W. Israel, Nuovo Cim. B 44, 1 (1966).

    Article  ADS  Google Scholar 

  3. M. Visser, S. Kar, and N. Dadhich, Phys. Rev. Lett. 90, 201102 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  4. S. H. Mazharimousavi, M. Halilsoy, and Z. Amirabi, Phys. Rev. D 81, 104002 (2010).

    Article  ADS  Google Scholar 

  5. F. Rahaman, S. Ray, A. K. Jafry, and K. Chakraborty, Phys. Rev. D 82, 104055 (2010).

    Article  ADS  Google Scholar 

  6. M. Sharif and M. Azam, Eur. Phys. J. C 73, 2407 (2013).

    Article  ADS  Google Scholar 

  7. M. Sharif and F. Javed, Gen. Relat. Grav. 48, 158 (2016).

    Article  ADS  Google Scholar 

  8. S. D. Forghani, H. S. Mazharimousavi, and M. Halilsoy, Eur. Phys. J. C 78, 469 (2018).

    Article  ADS  Google Scholar 

  9. M. Sharif and F. Javed, Astrophys. Space Sci. 364, 179 (2019);

    Article  ADS  Google Scholar 

  10. Int. J. Mod. Phys. A 35, 2040015 (2020);

  11. Ann. Phys. 416, 168146 (2020).

  12. M. Sharif, S. Mumtaz, and F. Javed, Int. J. Mod. Phys. A 35, 2050030 (2020).

    Article  ADS  Google Scholar 

  13. M. Visser and D. L. Wiltshire, Class. Quantum Grav. 21, 1135 (2004).

    Article  ADS  Google Scholar 

  14. B. M. N. Carter, Class. Quantum Grav. 22, 4551 (2005).

    Article  ADS  Google Scholar 

  15. D. Horvat, S. S. Ilijic, and A. Marunovic, Class. Quantum Grav. 26, 025003 (2009).

    Article  ADS  Google Scholar 

  16. A. A. Usmani et al., Phys. Lett. B 701, 388 (2011).

    Article  ADS  Google Scholar 

  17. A. Banerjee, F. Rahaman, S. Islam, and M. Govender, Eur. Phys. J. C 76, 34 (2016).

    Article  ADS  Google Scholar 

  18. N. Bilíc, G. B. Tupper, and R. D. Viollier, J. Cosmol. Astropart. Phys. 2006, 013 (2006).

  19. P. Rocha, R. Chan, M. F. A. da Silva, and A. Wang, J. Cosmol. Astropart. Phys. 2008, 10 (2008);

    Article  Google Scholar 

  20. J. Cosmol. Astropart. Phys. 2009, 10 (2009);

  21. J. Cosmol. Astropart. Phys. 2011, 13 (2011).

  22. D. Horvat, S. Ilijic, and A. Marunovic, Class. Quantum Grav. 28, 195008 (2011).

    Article  ADS  Google Scholar 

  23. F. Rahaman, A. A. Usmani, S. Ray, and S. Islam, Phys. Lett. B 707, 319 (2012);

    Article  MathSciNet  ADS  Google Scholar 

  24. Phys. Lett. B 717, 1 (2012).

  25. F. S. N. Lobo and R. Garattini, J. High Energy Phys. 1312, 065 (2013).

  26. A. Övgün, A. Banerjee, and K. Jusufi, Eur. Phys. J. C 77, 566 (2017).

    Article  ADS  Google Scholar 

  27. J. M. Bardeen, in Proceedings of GR5 Conference (Tiflis, USSR, 1968), p. 174.

  28. E. Ayón-Beato and A. García, Phys. Rev. Lett. 80, 5056 (1998).

    Article  ADS  Google Scholar 

  29. M. Wen-Juan, C. Rong-Gen, and S. Ru-Keng, Commun. Theor. Phys. 46, 453 (2006).

    Article  ADS  Google Scholar 

  30. M. Sharif and F. Javed, Ann. Phys. 415, 168124 (2020).

    Article  Google Scholar 

  31. M. Sharif and F. Javed, J. Exp. Theor. Phys. 132, 381 (2021).

    Article  ADS  Google Scholar 

  32. M. Sharif and F. Javed, Eur. Phys. J. C 81, 47 (2021).

    Article  ADS  Google Scholar 

  33. F. Rahaman, A. Banerjee, and I. Radinschi, Int. J. Theor. Phys. 52, 2943 (2013).

    Article  Google Scholar 

  34. T. Tangphati, A. Chatrabhuti, D. Samart, and P. Channuie, Eur. Phys. J. C 80, 722 (2020).

    Article  ADS  Google Scholar 

  35. S. Ghosh, F. Rahaman, B. K. Guha, and S. Ray, Phys. Lett. B 767, 380 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Ray, R. Sengupta, and H. Nimesh, Int. J. Mod. Phys. D 29, 2030004 (2020).

    Article  ADS  Google Scholar 

  37. Z. Yousaf, K. Bamba, M. Z. Bhatti, and U. Ghafoor, Phys. Rev. D 100, 024062 (2019).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Sharif or Faisal Javed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Javed, F. Dynamical Stability of Gravastars Covered with ABG Black Holes. J. Exp. Theor. Phys. 133, 439–448 (2021). https://doi.org/10.1134/S1063776121090119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121090119

Keywords:

Navigation