Skip to main content
Log in

The Origin of an Inflection Point on the Temperature Dependence of the London Penetration Depth in Hole-Doped Cuprate High-Temperature Superconductors

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A scenario of the formation of an experimentally observed inflection point on the temperature dependence of the London penetration depth λ in cuprate high-temperature superconductors (HTSCs) with optimal hole doping is discussed within the spin-polaron concept. It is shown that the reason for the appearance of an inflection point on the 1/λ2(T) dependence is due to the features of the energy spectrum of spin-polaron quasiparticles in the superconducting phase, as well as to the specific temperature dependence of their spectral density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Phys. Rev. Lett. 70, 3999 (1993).

    Article  ADS  Google Scholar 

  2. M. Tinkham, Introduction to Superconductivity (Courier, North Chelmsford, MA, 2004).

    Google Scholar 

  3. J. R. Schrieffer, Theory of Superconductivity (CRC, Boca Raton, FL, 2018).

    Book  MATH  Google Scholar 

  4. T. Jacobs, S. Sridhar, Qiang Li, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 75, 4516 (1995).

    Article  ADS  Google Scholar 

  5. C. Panagopoulos, J. R. Cooper, G. B. Peacock, I. Gameson, P. P. Edwards, W. Schmidbauer, and J. W. Hodby, Phys. Rev. B 53, 2999(R) (1996).

  6. D. M. Broun, D. C. Morgan, R. J. Ormeno, S. F. Lee, A. W. Tyler, A. P. Mackenzie, and J. R. Waldram, Phys. Rev. B 56, 11443(R) (1997).

  7. C. Panagopoulos, J. R. Cooper, and T. Xiang, Phys. Rev. B 57, 13422 (1998).

    Article  ADS  Google Scholar 

  8. C. Panagopoulos, B. D. Rainford, J. R. Cooper, W. Lo, J. L. Tallon, J. W. Loram, J. Betouras, Y. S. Wang, and C. W. Chu, Phys. Rev. B 60, 14617 (1999).

    Article  ADS  Google Scholar 

  9. R. F. Wang, S. P. Zhao, G. H. Chen, and Q. S. Yang, Appl. Phys. Lett. 75, 3865 (1999).

    Article  ADS  Google Scholar 

  10. K. M. Paget, S. Guha, M. Z. Cieplak, I. E. Trofimov, S. J. Turneaure, and T. R. Lemberger, Phys. Rev. B 59, 641 (1999).

    Article  ADS  Google Scholar 

  11. A. Hosseini, R. Harris, S. Kamal, P. Dosanjh, J. Preston, R. Liang, W. N. Hardy, and D. A. Bonn, Phys. Rev. B 60, 1349 (1999).

    Article  ADS  Google Scholar 

  12. D. M. Broun, W. A. Huttema, P. J. Turner, S. Özcan, B. Morgan, R. Liang, W. N. Hardy, and D. A. Bonn, Phys. Rev. Lett. 99, 237003 (2007).

    Article  ADS  Google Scholar 

  13. T. R. Lemberger, I. Hetel, A. Tsukada, and M. Naito, Phys. Rev. B 82, 214513 (2010).

    Article  ADS  Google Scholar 

  14. T. R. Lemberger, I. Hetel, A. Tsukada, M. Naito, and M. Randeria, Phys. Rev. B 83, 140507(R) (2011).

  15. A. V. Pronin, T. Fischer, J. Wosnitza, A. Ikeda, and M. Naito, Phys. C 473, 11 (2012).

    Article  ADS  Google Scholar 

  16. J. E. Sonier, J. Phys. Soc. Jpn. 85, 091005 (2016).

    Article  ADS  Google Scholar 

  17. Z. Guguchia, R. Khasanov, A. Shengelaya, E. Pomjakushina, S. J. L. Billinge, A. Amato, E. Morenzoni, and H. Keller, Phys. Rev. B 94, 214511 (2016).

    Article  ADS  Google Scholar 

  18. I. Božović, X. He, J. Wu, and A. T. Bollinger, Nature (London, U.K.) 536, 309 (2016).

    Article  ADS  Google Scholar 

  19. J. E. Sonier, J. H. Brewer, R. F. Kiefl, G. D. Morris, R. I. Miller, D. A. Bonn, J. Chakhalian, R. H. Heffner, W. N. Hardy, and R. Liang, Phys. Rev. Lett. 83, 4156 (1999).

    Article  ADS  Google Scholar 

  20. A. T. Savici, A. Fukaya, I. M. Gat-Malureanu, T. Ito, P. L. Russo, Y. J. Uemura, C. R. Wiebe, P. P. Kyriakou, G. J. MacDougall, M. T. Rovers, G. M. Luke, K. M. Kojima, M. Goto, S. Uchida, R. Kadono, et al., Phys. Rev. Lett. 95, 157001 (2005).

    Article  ADS  Google Scholar 

  21. R. Khasanov, A. Shengelaya, A. Maisuradze, F. la Mattina, A. Bussmann-Holder, H. Keller, and K. A. Müller, Phys. Rev. Lett. 98, 057007 (2007).

    Article  ADS  Google Scholar 

  22. R. Khasanov, S. Strässle, D. di Castro, T. Masui, S. Miyasaka, S. Tajima, A. Bussmann-Holder, and H. Keller, Phys. Rev. Lett. 99, 237601 (2007).

    Article  ADS  Google Scholar 

  23. R. Khasanov, A. Shengelaya, J. Karpinski, A. Bussmann-Holder, H. Keller, and K. A. Müller, J. Supercond. Nov. Magn. 21, 81 (2008).

    Article  Google Scholar 

  24. B. M. Wojek, S. Weyeneth, S. Bosma, E. Pomjakushina, and R. Puźniak, Phys. Rev. B 84, 144521 (2011).

    Article  ADS  Google Scholar 

  25. W. Anukool, S. Barakat, C. Panagopoulos, and J. R. Cooper, Phys. Rev. B 80, 024516 (2009).

    Article  ADS  Google Scholar 

  26. C. Bernhard, Ch. Niedermayer, U. Binninger, A. Hofer, Ch. Wenger, J. L. Tallon, G. V. M. Williams, E. J. Ansaldo, J. I. Budnick, C. E. Stronach, D. R. Noakes, and M. A. Blankson-Mills, Phys. Rev. B 52, 10488 (1995).

    Article  ADS  Google Scholar 

  27. P. Zimmermann, H. Keller, S. L. Lee, I. M. Savić, M. Warden, D. Zech, R. Cubitt, E. M. Forgan, E. Kaldis, J. Karpinski, and C. Krüger, Phys. Rev. B 52, 541 (1995).

    Article  ADS  Google Scholar 

  28. A. Suter, G. Logvenov, A. V. Boris, F. Baiutti, F. Wrobel, L. Howald, E. Stilp, Z. Salman, T. Prokscha, and B. Keimer, Phys. Rev. B 97, 134522 (2018).

    Article  ADS  Google Scholar 

  29. L. Howald, E. Stilp, F. Baiutti, C. Dietl, F. Wrobel, G. Logvenov, T. Prokscha, Z. Salman, N. Wooding, D. Pavuna, H. Keller, and A. Suter, Phys. Rev. B 97, 094514 (2018).

    Article  ADS  Google Scholar 

  30. W. N. Hardy, S. Kamal, and D. A. Bonn, Magnetic Penetration Depths in Cuprates: A Short Review of Measurement Techniques and Results, Vol. 371 of NATO Science Ser. B (Springer, Boston, MA, 2002).

  31. R. Prozorov and R. W. Giannetta, Supercond. Sci. Technol. 19, R41 (2006).

    Article  ADS  Google Scholar 

  32. D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter 23, 315702 (2011).

    ADS  Google Scholar 

  33. A. Valli, G. Sangiovanni, M. Capone, and C. di Castro, Phys. Rev. B 82, 132504 (2010).

    Article  ADS  Google Scholar 

  34. A. F. Barabanov, L. A. Maksimov, and A. V. Mikheyenkov, AIP Conf. Proc. 527, 1 (2000).

    Article  ADS  Google Scholar 

  35. V. V. Val’kov, D. M. Dzebisashvili, M. M. Korovushkin, and A. F. Barabanov, Phys. Usp. 91 (2021, in press).

  36. L. A. Maksimov, A. F. Barabanov, and R. O. Kuzian, Phys. Lett. A 232, 286 (1997).

    Article  ADS  Google Scholar 

  37. L. A. Maksimov, R. Hayn, and A. F. Barabanov, Phys. Lett. A 238, 288 (1998).

    Article  ADS  Google Scholar 

  38. V. V. Val’kov, M. M. Korovushkin, and A. F. Barabanov, JETP Lett. 88, 370 (2008).

    Article  ADS  Google Scholar 

  39. A. F. Barabanov, V. M. Berezovskii, E. Zhasinas, and L. A. Maksimov, J. Exp. Theor. Phys. 83, 819 (1996).

    ADS  Google Scholar 

  40. A. F. Barabanov, E. Žsinas, O. V. Urazaev, and L. A. Maksimov, JETP Lett. 66, 182 (1997).

    Article  ADS  Google Scholar 

  41. R. O. Kuzian, R. Hayn, and A. F. Barabanov, Phys. Rev. B 68, 195106 (2003).

    Article  ADS  Google Scholar 

  42. A. F. Barabanov, R. Khain, A. A. Kovalev, O. V. Urazaev, and A. M. Belemuk, J. Exp. Theor. Phys. 92, 677 (2001).

    Article  ADS  Google Scholar 

  43. D. M. Dzebisashvili, V. V. Val’kov, and A. F. Barabanov, JETP Lett. 98, 528 (2013).

    Article  ADS  Google Scholar 

  44. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, Phys. Lett. A 379, 421 (2015).

    Article  Google Scholar 

  45. V. V. Val’kov, D. M. Dzebisashvili, M. M. Korovushkin, and A. F. Barabanov, J. Magn. Magn. Mater. 440, 123 (2017).

    Article  ADS  Google Scholar 

  46. D. M. Dzebisashvili and K. K. Komarov, Eur. Phys. J. B 91, 278 (2018).

    Article  ADS  Google Scholar 

  47. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

    Article  ADS  Google Scholar 

  48. C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State Commun. 62, 681 (1987).

    Article  ADS  Google Scholar 

  49. J. E. Hirsch, Phys. Rev. Lett. 59, 228 (1987).

    Article  ADS  Google Scholar 

  50. J. Zaanen and A. M. Oleś, Phys. Rev. B 37, 9423 (1988).

    Article  ADS  Google Scholar 

  51. V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988).

    Article  ADS  Google Scholar 

  52. P. Prelovšek, Phys. Lett. A 126, 287 (1988).

    Article  ADS  Google Scholar 

  53. E. B. Stechel and D. R. Jennison, Phys. Rev. B 38, 4632 (1988).

    Article  ADS  Google Scholar 

  54. A. F. Barabanov, L. A. Maksimov, and G. V. Uimin, Sov. Phys. JETP 69, 371 (1989).

    ADS  Google Scholar 

  55. V. V. Val’kov, T. A. Val’kova, D. M. Dzebisashvili, and S. G. Ovchinnikov, Mod. Phys. Lett. B 17, 441 (2003).

    Article  ADS  Google Scholar 

  56. K. K. Komarov and D. M. Dzebisashvili, Phys. Scr. 95, 065806 (2020).

    Article  ADS  Google Scholar 

  57. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, J. Low Temp. Phys. 181, 134 (2015).

  58. V. V. Val’kov, D. M. Dzebisashvili, M. M. Korovushkin, and A. F. Barabanov, J. Exp. Theor. Phys. 125, 810 (2017).

    Article  ADS  Google Scholar 

  59. C. W. Chu, L. Z. Deng, and B. Lv, Phys. C (Amsterdam, Neth.) 514, 290 (2015).

  60. R. E. Peierls, Z. Phys. 80, 763 (1933).

    Article  ADS  Google Scholar 

  61. E. M. Lifshits and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Fizmatlit, Moscow, 2015; Pergamon, New York, 1980).

  62. M. V. Eremin, I. A. Larionov, and I. E. Lyubin, J. Phys.: Condens. Matter 22, 185704 (2010).

    ADS  Google Scholar 

  63. Zh. Huang, H. Zhao, and Sh. Feng, Phys. Rev. B 83, 144524 (2011).

    Article  ADS  Google Scholar 

  64. R. Zwanzig, Phys. Rev. 124, 983 (1961).

    Article  ADS  Google Scholar 

  65. H. Mori, Prog. Theor. Phys. 33, 423 (1965).

    Article  ADS  Google Scholar 

  66. G. Shirane, Y. Endoh, R. J. Birgeneau, M. A. Kastner, Y. Hidaka, M. Oda, M. Suzuki, and T. Murakami, Phys. Rev. Lett. 59, 1613 (1987).

    Article  ADS  Google Scholar 

  67. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, J. Supercond. Nov. Magn. 29, 1049 (2016).

  68. M. S. Hybertsen, M. Schlüter, and N. E. Christensen, Phys. Rev. B 39, 9028 (1989).

    Article  ADS  Google Scholar 

  69. A. K. McMahan, J. F. Annett, and R. M. Martin, Phys. Rev. B 10, 6268 (1990).

    Article  ADS  Google Scholar 

  70. M. H. Fischer, Phys. Rev. B 84, 144502 (2011).

    Article  ADS  Google Scholar 

  71. R. O. Zaitsev, Phys. Lett. A 134, 199 (1988).

    Article  ADS  Google Scholar 

  72. A. F. Barabanov, V. M. Beresovsky, E. Žasinas, and L. A. Maksimov, Phys. C (Amsterdam, Neth.) 252, 308 (1995).

  73. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, JETP Lett. 104, 730 (2016).

    Article  ADS  Google Scholar 

  74. A. Damascelli, Z. Hussain, and Zh.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).

    Article  ADS  Google Scholar 

  75. T. Yoshida, X. J. Zhou, D. H. Lu, S. Komiya, Yo. Ando, H. Eisaki, T. Kakeshita, S. Uchida, Z. Hussain, Z.‑X. Shen, and A. Fujimori, J. Phys.: Condens. Matter 19, 125209 (2007).

    ADS  Google Scholar 

  76. N. Doiron-Leyraud, C. Proust, D. Le Boeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature (London, U.K.) 447, 565 (2007).

    Article  ADS  Google Scholar 

  77. E. Razzoli, Y. Sassa, G. Drachuck, M. Mansson, A. Keren, M. Shay, M. H. Berntsen, O. Tjernberg, M. Radovic, J. Chang, S. Pailhé, N. Momono, M. Oda, M. Ido, O. J. Lipscombe, S. M. Hayden, L. Patthey, J. Mesot, and M. Shi, New J. Phys. 12, 125003 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 18-02-00837 and 20-32-70059.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. K. Komarov or D. M. Dzebisashvili.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarov, K.K., Dzebisashvili, D.M. The Origin of an Inflection Point on the Temperature Dependence of the London Penetration Depth in Hole-Doped Cuprate High-Temperature Superconductors. J. Exp. Theor. Phys. 133, 351–359 (2021). https://doi.org/10.1134/S1063776121080021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121080021

Navigation