Skip to main content
Log in

Application of Magnetically Induced Transitions of the 85Rb D2 Line in Coherent Processes

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Magnetically induced Fg = 2 → Fe = 4 transitions corresponding to the 85Rb D2 line in the case of the σ+ circularly polarized radiation have been used for the first time to form optical dark resonances in strong magnetic fields up to 1 kG under electromagnetically induced transparency conditions. A 1.5-μm-thick cell filled with Rb atomic vapor has been used. The probabilities of two of five magnetically induced transitions, which are efficiently formed only with the σ+-polarized radiation, in the magnetic field range of 0.2–1 kG exceed the probabilities of “ordinary” atomic transitions. For this reason, it is appropriate to use them in Λ systems for the formation of the dark resonance. The following rule has been established: for the formation of the dark resonance in a Λ system with the use of the σ+-polarized probe radiation at the frequencies of magnetically induced transitions, the radiation of the coupling laser should also be σ+ polarized; the dark resonance is not formed if the radiation of the coupling laser is σ polarized, which is confirmed by the calculated theoretical curve. A significant advantage of magnetically induced resonances for electromagnetically induced transparency compared to ordinary atomic transitions corresponding to the 85Rb D2 line has been demonstrated. The formation of dark resonances in strong magnetic fields, when their frequency is shifted by several gigahertzs, can be applied in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Kitching, Appl. Phys. Rev. 5, 031302 (2018).

    Article  ADS  Google Scholar 

  2. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990).

    Article  ADS  Google Scholar 

  3. A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, Laser Phys. Lett. 11, 055701 (2014).

    Article  ADS  Google Scholar 

  4. S. Scotto, D. Ciampini, C. Rizzo, and E. Arimondo, Phys. Rev. A 92, 063810 (2015).

    Article  ADS  Google Scholar 

  5. S. Scotto, Doctoral Thesis (Univ. Paul Sabatier, Toulouse III, 2016); tel-01482289v2.

  6. A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Am. B 34, 776 (2017).

    Article  ADS  Google Scholar 

  7. A. Sargsyan, A. Tonoyan, G. Hakhumyan, and D. Sarkisyan, JETP Lett. 106, 700 (2017).

    Article  ADS  Google Scholar 

  8. A. Tonoyan, A. Sargsyan, E. Klinger, G. Hakhumyan, C. Leroy, M. Auzinsh, A. Papoyan, and D. Sarkisyan, Europhys. Lett. 121, 53001 (2018).

    Article  ADS  Google Scholar 

  9. A. Sargsyan, A. Amiryan, A. Tonoyan, E. Klinger, and D. Sarkisyan, Phys. Lett. A 390, 127114 (2021).

    Article  Google Scholar 

  10. A. Sargsyan, B. Glushko, and D. Sarkisyan, J. Exp. Theor. Phys. 120, 579 (2015).

    Article  ADS  Google Scholar 

  11. D. Sarkisyan, G. Hakhumyan, and A. Sargsyan, J. Exp. Theor. Phys. 131, 671 (2020).

    Article  ADS  Google Scholar 

  12. A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. Wojciechowski, and W. Gawlik, Opt. Lett. 39, 2270 (2014).

    Article  ADS  Google Scholar 

  13. R. S. Mathew, F. Ponciano-Ojeda, J. Keaveney, D. J. Whiting, and I. G. Hughes, Opt. Lett. 43, 4204 (2018).

    Article  ADS  Google Scholar 

  14. V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, Rev. Sci. Instrum. 77, 013102 (2006).

    Article  ADS  Google Scholar 

  15. V. V. Yashchuk, D. Budker, and J. R. Davis, Rev. Sci. Instrum. 71, 341 (2000).

    Article  ADS  Google Scholar 

  16. A. Sargsyan, A. Tonoyan, A. Papoyan, and D. Sarkisyan, Opt. Lett. 44, 1391 (2019).

    Article  ADS  Google Scholar 

  17. A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, S. Cartaleva, and D. Sarkisyan, J. Mod. Opt. 62, 769 (2015).

    Article  ADS  Google Scholar 

  18. J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, Phys. Rev. Lett. 108, 173601 (2012).

    Article  ADS  Google Scholar 

  19. C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, Phys. Rev. A 76, 013837 (2007).

    Article  ADS  Google Scholar 

  20. A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan, A. Atvars, and M. Auzinsh, Appl. Phys. Lett. 93, 021119 (2008).

    Article  ADS  Google Scholar 

  21. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).

    Article  ADS  Google Scholar 

  22. A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, D. Sarkisyan, D. Slavov, and S. Cartaleva, Opt. Commun. 285, 2090 (2012).

    Article  ADS  Google Scholar 

  23. P. R. S. Carvalho, L. E. E. de Araujo, and J. W. R. Tabosa, Phys. Rev. A 70, 063818 (2004).

    Article  ADS  Google Scholar 

  24. T. Zanon-Willette, E. de Clercq, and E. Arimondo, Phys. Rev. A 84, 062502 (2011).

    Article  ADS  Google Scholar 

  25. S. Khan, M. P. Kumar, V. Bharti, and V. Natarajan, Eur. Phys. J. D 71, 38 (2017).

    Article  ADS  Google Scholar 

  26. J. Gea Banacloche, Y. Q. Li, S. Z. Jin, and Min Xiao, Phys. Rev. A 51, 576 (1995).

    Article  ADS  Google Scholar 

  27. R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).

    Article  ADS  Google Scholar 

  28. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  29. D. Sarkisyan, A. Sargsyan, J. Keaveney, and C. S. Adams, J. Exp. Theor. Phys. 119, 8 (2014).

    Article  ADS  Google Scholar 

  30. S. Mitra, S. Dey, M. M. Hossain, P. N. Ghosh, and B. Ray, J. Phys. B: At. Mol. Opt. Phys. 46, 075002 (2013).

    Article  ADS  Google Scholar 

  31. A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, JETP Lett. 96, 303 (2012).

    Article  ADS  Google Scholar 

  32. B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011).

    Article  ADS  Google Scholar 

  33. M. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, Comput. Phys. Commun. 189, 162 (2015).

    Article  ADS  Google Scholar 

  34. A. Sargsyan, A. V. Papoyan, D. Sarkisyan, and A. Weis, Appl. Phys. 48, 20701 (2009).

    Google Scholar 

  35. L. Ma and G. Raithel, J. Phys. Commun. 4, 095020 (2020).

    Article  Google Scholar 

  36. H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, J. Phys. B: At. Mol. Opt. Phys. 50, 095401 (2017).

    Article  ADS  Google Scholar 

  37. T. Peyrot, C. Beurthe, S. Coumar, M. Roulliay, K. Perronet, P. Bonnay, C. S. Adams, A. Browaeys, and Y. R. P. Sortais, Opt. Lett. 44, 1940 (2019).

    Article  ADS  Google Scholar 

  38. T. F. Cutler, W. J. Hamlyn, J. Renger, K. A. Whittaker, D. Pizzey, I. G. Hughes, V. Sandoghdar, and C. S. Adams, Phys. Rev. Appl. 14, 034054 (2020).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to G. Hakhumyan for some of the presented calculated curves.

Funding

A. Sargsyan acknowledges support from the Committee for Science, Ministry of Education, Science, Culture, and Sport of the Republic of Armenia (project no. 19YR-1C017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sarkisyan.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Tonoyan, A. & Sarkisyan, D. Application of Magnetically Induced Transitions of the 85Rb D2 Line in Coherent Processes. J. Exp. Theor. Phys. 133, 16–25 (2021). https://doi.org/10.1134/S1063776121070086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121070086

Navigation