Skip to main content
Log in

Fermi Surface Topology Signature on the High Harmonics Generation in Graphene-Like Nanostructure

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The response of high harmonics of a laser field to the change of Fermi surface topology in graphene-like nanostructures during the process of the high harmonic generation has been investigated. The microscopic nonlinear quantum theory of the interaction of intense coherent electromagnetic radiation with such systems near the critical Fermi level is used. The Liouville–von Neumann equation for the density matrix in the multiphoton excitation regime is solved numerically. The obtained results show that high harmonics are sensitive to the change of the topology of the Fermi surface which can be used for the determination of the Fermi energy in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. F. Mackenroth, N. Kumar, A. di Piazza, et al., Proc. SPIE 11039, 1103902 (2019).

    Google Scholar 

  2. H. K. Avetissian, Relativistic Nonlinear Electrodynamics, The QED Vacuum and Matter in Super-Strong Radiation Fields (Springer, Berlin, 2016).

    Book  MATH  Google Scholar 

  3. A. di Piazza, C. Muller, K. Z. Hatsagortsyan, et al., Rev. Mod. Phys. 84, 1177 (2012).

    Article  ADS  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science (Washington, DC, U. S.) 306 (5696), 666 (2004).

    Article  ADS  Google Scholar 

  5. A. K. Geim, Science (Washington, DC, U. S.) 324, 1530 (2009).

    Article  ADS  Google Scholar 

  6. A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  7. F. Langer, M. Hohenleutner, C. P. Schmid, et al., Nature (London, U.K.) 533, 225 (2016).

    Article  ADS  Google Scholar 

  8. O. Schubert, M. Hohenleutner, F. Langer, et al., Nat. Photon. 8, 119 (2014).

    Article  ADS  Google Scholar 

  9. G. Vampa, C. R. McDonald, G. Orlando, et al., Phys. Rev. Lett. 113, 073901 (2014).

    Article  ADS  Google Scholar 

  10. G. Vampa, T. J. Hammond, N. Thir, et al., Nature (London, U.K.) 522, 462 (2015).

    Article  ADS  Google Scholar 

  11. G. Ndabashimiye, Sh. Ghimire, M. Wu, et al., Nature (London, U.K.) 534, 520 (2016).

    Article  ADS  Google Scholar 

  12. Sh. Ghimire and D. A. Reis, Nat. Phys. 15, 10 (2019).

    Article  Google Scholar 

  13. Sh. Imai, A. Ono, and S. Ishihara, Phys. Rev. Lett. 124, 157404 (2020).

    Article  ADS  Google Scholar 

  14. S. A. Mikhailov and K. Ziegler, J. Phys.: Condens. Matter 20, 384204 (2008).

    ADS  Google Scholar 

  15. H. K. Avetissian, A. K. Avetissian, G. F. Mkrtchian, et al., Phys. Rev. B 85, 115443 (2012).

    Article  ADS  Google Scholar 

  16. H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, et al., Phys. Rev. B 88, 165411 (2013).

    Article  ADS  Google Scholar 

  17. P. Bowlan, E. Martinez-Moreno, K. Reimann, et al., Phys. Rev. B 89, 041408(R) (2014).

  18. I. Al-Naib, J. E. Sipe, and M. M. Dignam, Phys. Rev. B 90, 245423 (2014).

    Article  ADS  Google Scholar 

  19. H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 94, 045419 (2016).

    Article  ADS  Google Scholar 

  20. H. K. Avetissian, A. G. Ghazaryan, G. F. Mkrtchian, et al., J. Nanophoton. 11, 016004 (2017).

    Article  ADS  Google Scholar 

  21. L. A. Chizhova, F. Libisch, and J. Burgdorfer, Phys. Rev. B 95, 085436 (2017).

    Article  ADS  Google Scholar 

  22. D. Dimitrovski, L. B. Madsen, and T. G. Pedersen, Phys. Rev. B 95, 035405 (2017).

    Article  ADS  Google Scholar 

  23. N. Yoshikawa, T. Tamaya, and K. Tanaka, Science (Washington, DC, U. S.) 356, 736 (2017).

    Article  ADS  Google Scholar 

  24. H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 97, 115454 (2018).

    Article  ADS  Google Scholar 

  25. H. K. Avetissian, A. K. Avetissian, B. R. Avchyan, et al., Phys. Rev. B 100, 035434 (2019).

    Article  ADS  Google Scholar 

  26. H. K. Avetissian, A. K. Avetissian, A. G. Ghazaryan, et al., J. Nanophoton. 14, 026004 (2020).

    ADS  Google Scholar 

  27. A. K. Avetissian, A. G. Ghazaryan, and Kh. V. Sedrakian, J. Nanophoton. 13, 036010 (2019).

  28. A. G. Ghazaryan, H. H. Matevosyan, and Kh. V. Sedrakian, J. Nanophoton. 14, 046009 (2020).

  29. H. K. Avetissian, B. R. Avchyan, G. F. Mkrtchian, and K. A. Sargsyan, J. Nanophoton. 14, 026018 (2020).

  30. H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 99, 085432 (2019).

    Article  ADS  Google Scholar 

  31. G. L. Breton, A. Rubio, and N. Tancogne-Dejean, Phys. Rev. B 98, 165308 (2018).

    Article  ADS  Google Scholar 

  32. H. Liu, Y. Li, Y. S. You, et al., Nat. Phys. 13, 262 (2017).

    Article  Google Scholar 

  33. H. K. Avetissian, G. F. Mkrtchian, and K. Z. Hatsagortsyan, Phys. Rev. Res. 2, 023072 (2020).

    Article  Google Scholar 

  34. A. D. Güçlü, P. Potasz, M. Korkusinski, and P. Hawrylak, Graphene Quantum Dots (Springer, Berlin, 2014).

    Book  Google Scholar 

  35. Ch. Torre, Introduction to Quantum Statistical Thermodynamics (Springer, Berlin, 2015).

    Google Scholar 

  36. E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).

    Article  ADS  Google Scholar 

  37. I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

  38. J. L. Manes, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B 75, 155424 (2007).

    Article  ADS  Google Scholar 

  39. G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. B 77, 113407 (2008).

    Article  ADS  Google Scholar 

  40. D. S. L. Abergel and T. Chakraborty, Appl. Phys. Lett. 95, 062107 (2009).

    Article  ADS  Google Scholar 

  41. E. S. Morell and L. E. F. F. Torres, Phys. Rev. B 86, 125449 (2012).

    Article  ADS  Google Scholar 

  42. J. J. Dean and H. M. van Driel, Phys. Rev. B 82, 125411 (2010).

    Article  ADS  Google Scholar 

  43. S. Wu, L. Mao, A. M. Jones, et al., Nano Lett. 12, 2032 (2012).

    Article  ADS  Google Scholar 

  44. Y. S. Ang, S. Sultan, and C. Zhang, Appl. Phys. Lett. 97, 243110 (2010).

    Article  ADS  Google Scholar 

  45. N. Kumar, J. Kumar, C. Gerstenkorn, et al., Phys. Rev. B 87, 121406 (2013).

    Article  ADS  Google Scholar 

  46. E. V. Castro, K. S. Novoselov, S. V. Morozov, et al., Phys. Rev. Lett. 99, 216802 (2007).

    Article  ADS  Google Scholar 

  47. J. B. Oostinga, H. B. Heersche, X. Liu, et al., Nat. Mater. 7, 151 (2008).

    Article  ADS  Google Scholar 

  48. Y. B. Zhang, T.-T. Tang, C. Girit, et al., Nature (London, U.K.) 459, 820 (2009).

    Article  ADS  Google Scholar 

  49. F. Guinea, A. H. C. Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006).

    Article  ADS  Google Scholar 

  50. M. Koshino and T. Ando, Phys. Rev. B 73, 245403 (2006).

    Article  ADS  Google Scholar 

  51. M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, et al., Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  52. A.Varleta, M. Mucha-Kruczynski, D. Bischoff, et al., Synth. Met. 210, 19 (2015).

    Article  Google Scholar 

  53. E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 115449 (2008).

    Article  ADS  Google Scholar 

  54. J. K. Viljas and T. T. Heikkila, Phys. Rev. B 81, 245404 (2010).

    Article  ADS  Google Scholar 

  55. I. F. Akyildiz, J. M. Jornet, and C. Han, Phys. Commun. 12, 16 (2014).

    Article  Google Scholar 

  56. H. Vettikalladi, W. T. Sethi, A. F. Bin Abas, et al., Int. J. Anten. Propag. 2019, 9573647 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ghazaryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avchyan, B.R., Ghazaryan, A.G., Sargsyan, K.A. et al. Fermi Surface Topology Signature on the High Harmonics Generation in Graphene-Like Nanostructure. J. Exp. Theor. Phys. 132, 883–891 (2021). https://doi.org/10.1134/S106377612106008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612106008X

Navigation