Skip to main content
Log in

High Harmonic Generation in Triangular Graphene Quantum Dots

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Higher harmonic generation in plane graphene quantum dots initiated by intense coherent radiation is investigated using dynamical Hartree–Fock mean-field theory. A microscopic theory describing the extreme nonlinear optical response of plane graphene quantum dots is developed. The closed set of differential equations for the single-particle density matrix at the multiphoton interaction of graphene quantum dots and strong laser field is solved numerically. The obtained solutions indicate the significance of the type of edge and lateral size and the band gap and laser field strength in the process of high harmonic generation in the triangular graphene quantum dot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science (Washington, DC, U. S.) 306 (5696), 666 (2004).

    Article  ADS  Google Scholar 

  2. H. Liu, Y. Li, Y. S. You, et al., Nat. Phys. 13, 262 (2017).

    Article  Google Scholar 

  3. A. H. C. Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  4. S. A. Mikhailov and K. Ziegler, J. Phys.: Condens. Matter 20, 384204 (2008).

  5. H. K. Avetissian, G. F. Mkrtchian, K. V. Sedrakian, et al., J. Nanophoton. 6, 061702 (2012).

  6. H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, et al., Phys. Rev. B 88, 165411 (2013).

  7. I. Al-Naib, J. E. Sipe, and M. M. Dignam, New J. Phys. 17, 113018 (2015).

  8. L. A. Chizhova, F. Libisch, and J. Burgdorfer, Phys. Rev. B 94, 075412 (2016).

  9. L. A. Chizhova, F. Libisch, and J. Burgdorfer, Phys. Rev. B 95, 085436 (2017).

  10. H. K. Avetissian, A. G. Ghazaryan, G. F. Mkrtchian, and Kh. V. Sedrakian, J. Nanophoton. 11, 016004 (2017).

  11. D. Dimitrovski, L. B. Madsen, and T. G. Pedersen, Phys. Rev. B 95, 035405 (2017).

  12. H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 97, 115454 (2018).

  13. H. K. Avetissian, A. K. Avetissian, B. R. Avchyan, and G. F. Mkrtchian, Phys. Rev. B 100, 035434 (2019).

  14. H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 99, 085432 (2019).

  15. A. K. Avetissian, A. G. Ghazaryan, and Kh. V. Sedrakian, J. Nanophoton. 13, 036010 (2019).

  16. H. K. Avetissian, A. K. Avetissian, A. G. Ghazaryan, et al., J. Nanophoton. 14, 026004 (2020).

  17. A. G. Ghazaryan, H. H. Matevosyan, and Kh. V. Sedrakian, J. Nanophoton. 14, 046009 (2020).

  18. H. K. Avetissian, Relativistic Nonlinear Electrodynamics, The QED Vacuum and Matter in Superstrong Radiation Fields (Springer, Berlin, 2016).

    Book  Google Scholar 

  19. B. R. Avchyan, A. G. Ghazaryan, K. A. Sargsyan, and Kh. V. Sedrakian, J. Exp. Theor. Phys. 132, 883 (2021).

    Article  ADS  Google Scholar 

  20. A. G. Ghazaryan, J. Exp. Theor. Phys. 132, 843 (2021).

    Article  ADS  Google Scholar 

  21. G. P. Zhang and Y. H. Bai, Phys. Rev. B 101, 081412(R) (2020).

  22. H. K. Avetissian, A. G. Ghazaryan, and G. F. Mkrtchian, Phys. Rev. B 104, 125436 (2021).

  23. P. Bowlan, E. Martinez-Moreno, K. Reimann, et al., Phys. Rev. B 89, 041408(R) (2014).

  24. N. Yoshikawa, T. Tamaya, and K. Tanaka, Science (Washington, DC, U. S.) 356, 736 (2017).

    Article  ADS  Google Scholar 

  25. H. K. Avetissian, A. K. Avetissian, G. F. Mkrtchian, and Kh. V. Sedrakian, Phys. Rev. B 85, 115443 (2012).

  26. A. K. Avetissian, A. G. Ghazaryan, Kh. V. Sedrakian, and B. R. Avchyan, J. Nanophoton. 12, 016006 (2018).

  27. E. V. Castro, K. S. Novoselov, S. V. Morozov, et al., Phys. Rev. Lett. 99, 216802 (2007).

  28. J. B. Oostinga, H. B. Heersche, X. Liu, et al., Nat. Mater. 7, 151 (2008).

    Article  ADS  Google Scholar 

  29. Y. B. Zhang, T.-T. Tang, C. Girit, et al., Nature (London, U.K.) 459, 820 (2009).

    Article  ADS  Google Scholar 

  30. F. Guinea, A. H. C. Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006).

  31. M. Koshino and T. Ando, Phys. Rev. B 73, 245403 (2006).

  32. A. Varleta, M. Mucha-Kruczynski, D. Bischoff, et al., Synth. Met. 210, 19 (2015).

    Article  Google Scholar 

  33. A. D. Guclu, P. Potasz, M. Korkusinski, and P. Hawrylak, Graphene Quantum Dots (Springer, Berlin, 2014).

    Google Scholar 

  34. H. K. Avetissian, B. R. Avchyan, G. F. Mkrtchian, and K. A. Sargsyan, J. Nanophoton. 14, 026018 (2020).

  35. A. D. Guclu, P. Potasz, and P. Hawrylak, in Future Trends in Microelectronics: Frontiers and Innovations, Ed. by S. Luryi, J. Xu, and A. Zaslavsky (Wiley, New York, 2013).

    Google Scholar 

  36. A. D. Guclu, P. Potasz, and P. Hawrylak, Phys. Rev. B 82, 155445 (2010).

  37. A. D. Guclu, P. Potasz, O. Voznyy, et al., Phys. Rev. Lett. 103, 246805 (2009).

  38. O. Voznyy, A.D. Guclu, P. Potasz, and P. Hawrylak, Phys. Rev. B 83, 165417 (2011).

  39. W. L. Wang, S. Meng, and E. Kaxiras, Nano Lett. 8, 241 (2008).

    Article  ADS  Google Scholar 

  40. M. Y. Han, B. Ozyilmaz, Y. Zhang, and Ph. Kim, Phys. Rev. Lett. 98, 206805 (2007).

  41. M. Lewenstein, Ph. Balcou, M. Y. Ivanov, et al., Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  42. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  ADS  Google Scholar 

  43. S. Reich, C. Thomson, and J. Maultzsch, Carbon Nanotubes, Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are deeply grateful to Prof. H.K. Avetissian and Dr. G.F. Mkrtchian for the permanent discussions and valuable recommendations.

Funding

This work was supported by the Science Committee of the Republic of Armenia within the framework of the research project 20TTWS–1C010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ghazaryan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avchyan, B.R., Ghazaryan, A.G., Sargsyan, K.A. et al. High Harmonic Generation in Triangular Graphene Quantum Dots. J. Exp. Theor. Phys. 134, 125–134 (2022). https://doi.org/10.1134/S106377612202011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612202011X

Navigation