Skip to main content
Log in

Relaxation Contribution of a System of Jahn–Teller Complexes to the Elastic Moduli of Doped Fluorites

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of the study of the temperature dependence of attenuation and velocity of ultrasonic waves are presented for CaF2:Cr and CaF2:Ni crystals in which Cr2+ and Ni2+ ions substitute calcium ions, forming Jahn–Teller (JT) complexes [CrF8]6– and [NiF8]6–. The Cr2+ and Ni2+ ions in the fluorite structure have threefold orbital degeneracy in the ground state, are described by the T \( \otimes \) (e + t2) Jahn–Teller effect (JTE) problem, and have an adiabatic potential energy surface (APES) defined in the five-dimensional space of trigonal and tetragonal symmetrized coordinates whose lower sheet is a simply connected surface with orthorhombic minima separated by potential energy barriers. The temperature dependence of the ultrasonic attenuation and velocity exhibits anomalies typical of the relaxation contributions of systems of JT complexes in the low-temperature region. The effect of tunneling relaxation mechanisms (direct and two-phonon transitions) on the JT contribution to the complex elastic moduli and to the error in determining the relaxation time is analyzed. Based on the approach that takes into account both tunneling and activation mechanisms of relaxation, the activation energies and the constants characterizing these relaxation mechanisms are determined in CaF2:Cr2+ and CaF2:Ni2+ crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. H. A. Jahn and E. Teller, Proc. R. Soc. London, Ser. A 161, 220 (1937).

    Article  ADS  Google Scholar 

  2. I. B. Bersuker, The Jahn–Teller Effect (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  3. I. B. Bersuker, J. Phys.: Conf. Ser. 833, 012001 (2017).

    Google Scholar 

  4. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, et al., Appl. Phys. Rev. 4, 041305 (2017).

    Article  ADS  Google Scholar 

  5. M. D. Kaplan and G. O. Zimmerman, J. Phys.: Conf. Ser. 833, 012007 (2017).

    Google Scholar 

  6. D. Liu, N. Iwahara, and L. F. Chibotaru, Phys. Rev. B 97, 115412 (2019).

    Article  ADS  Google Scholar 

  7. J. L. Dunn and E. Rashed, J. Phys.: Conf. Ser. 1148, 012003 (2018).

    Google Scholar 

  8. Yu. S. Orlov, S. V. Nikolaev, S. G. Ovchinnikov, and A. I. Nesterov, JETP Lett. 112, 250 (2020).

    Article  ADS  Google Scholar 

  9. S. Merten, O. Shapoval, B. Damaschke, et al., Sci. Rep. 9, 2387 (2019).

    Article  ADS  Google Scholar 

  10. V. Polinger and I. B. Bersuker, J. Phys.: Conf. Ser. 833, 012012 (2017).

    Google Scholar 

  11. M. Angeli, E. Tosatti, and M. Fabrizio, Phys. Rev. X 9, 041010 (2019).

    Google Scholar 

  12. A. V. Kuzmin, S. S. Khasanov, K. P. Meletov, and R. P. Shibaeva, J. Exp. Theor. Phys. 128, 878 (2019).

    Article  ADS  Google Scholar 

  13. K. M. Krasikov, A. N. Azarevich, V. V. Glushkov, S. V. Demishev, A. L. Khoroshilov, A. V. Bogach, N. Yu. Shitsevalova, V. B. Filippov, and N. E. Sluchanko, JETP Lett. 112, 413 (2020).

    Article  ADS  Google Scholar 

  14. M. D. Sturge, Solid State Phys. 20, 91 (1968).

    Article  Google Scholar 

  15. W. Ulrici, Phys. Status Solidi 84, K155 (1977).

    Article  ADS  Google Scholar 

  16. M. M. Zaripov, V. F. Tarasov, V. A. Ulanov et al., Phys. Solid State 37, 437 (1995).

    ADS  Google Scholar 

  17. P. B. Oliete, V. M. Orera, and P. J. Alonso, Phys. Rev. B 53, 3047 (1996).

    Article  ADS  Google Scholar 

  18. P. B. Oliete, V. M. Orera, and P. J. Alonso, Phys. Rev. B 54, 12099 (1996).

    Article  ADS  Google Scholar 

  19. S. K. Hoffmann, J. Goslar, S. Lijewski, and V. A. Ulanov, J. Chem. Phys. 127, 124705 (2007).

    Article  ADS  Google Scholar 

  20. C. Zener, Elasticity and Anelesticity of Metals (Univ. Chicago Press, Chicago, 1948).

  21. V. V. Gudkov, M. N. Sarychev, S. Zherlitsyn, et al., Sci. Rep. 10, 7076 (2020).

    Article  ADS  Google Scholar 

  22. N. S. Averkiev, I. B. Bersuker, V. V. Gudkov, I. V. Zhevstovskikh, M. N. Sarychev, S. Zherllitsyn, S. Yasin, G. S. Shakurov, V. A. Ulanov, and V. T. Surikov, in Fluorite: Structure, Chemistry and Applications, Ed. by M. van Asten (Nova Science, New York, 2019), Chap. 2, p. 111.

    Google Scholar 

  23. N. S. Averkiev, I. B. Bersuker, V. V. Gudkov, I. V. Zhevstovskikh, M. N. Sarychev, S. Zherlitsyn, S. Yasin, Yu. V. Korostelin, and V. T. Surikov, J. Exp. Theor. Phys. 129, 72 (2019).

    Article  ADS  Google Scholar 

  24. Y. P. Varshni, Phys. Rev. B 2, 3952 (1970).

    Article  ADS  Google Scholar 

  25. M. N. Sarychev, W. A. L. Hosseny, A. S. Bondarevskaya, et al., J. Alloys Compd. 848, 156167 (2020).

    Article  Google Scholar 

  26. M. N. Sarychev, A. S. Bondarevskaya, I. V. Zhevstovskikh, V. A. Ulanov, G. S. Shakurov, A. V. Egranov, V. T. Surikov, N. S. Averkiev, and V. V. Gudkov, JETP Lett. 113, 47 (2021).

    Article  ADS  Google Scholar 

  27. V. V. Gudkov, in The Jahn–Teller Effect: Fundamentals and Implications for Physics and Chemistry, Ed. by H. Koppel, D. R. Yarkony, and H. Barentzen (Springer, Berlin, 2009), p. 743.

    Google Scholar 

  28. M. M. Zaripov, V. S. Kropotov, L. D. Livanova, and V. G. Stepanov, Sov. Phys. Solid State 9, 155 (1967).

    Google Scholar 

  29. M. M. Zaripov, V. F. Tarasov, V. A. Ulanov, and G. S. Shakurov, Phys. Solid State 44, 2050 (2002).

    Article  ADS  Google Scholar 

  30. I. V. Zhevstovskikh, I. B. Bersuker, V. V. Gudkov, et al., J. Appl. Phys. 119, 225108 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

At the Ural Federal University, the research was supported by the Russian Foundation for Basic Research (project no. 18-02-00332a), by the Center of Excellence of the Ural Federal University “Radiation and Nuclear Technologies,” and by the Ministry of Science and Higher Education of the Russian Federation within the State Assignment no. FEUZ-2020-0060. At the South Ural State University, the research was supported by the Government of the Russian Federation (Act 211, contract no. 02.A03.21.0011, Program 5-100). The research at the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, was carried out within the State Assignment no. AAAA-A18-118020190098-5. The research at the Zavoisky Physical–Technical Institute, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences, was carried out within the State Assignment no. АААА-А18-118030690040-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Gudkov.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarychev, M.N., Bondarevskaya, A.S., Zhevstovskikh, I.V. et al. Relaxation Contribution of a System of Jahn–Teller Complexes to the Elastic Moduli of Doped Fluorites. J. Exp. Theor. Phys. 132, 790–799 (2021). https://doi.org/10.1134/S106377612105006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612105006X

Navigation