Skip to main content
Log in

Laser Isotope-Selective IR Dissociation of Molecules with a Small Isotopic Shift in Absorption Spectra in Nonequilibrium Thermodynamic Shock Conditions

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report on the results of investigation of laser isotope-selective IR dissociation of molecules (CF3Br and CF2HCl as examples) characterized by a small (less than 0.25 cm–1) isotopic shift in the IR absorption spectra in nonequilibrium thermodynamic conditions of a compression shock (shock wave) formed in front of the solid surface under the action of an intense incident pulsed gasdynamically cooled molecular beam. Experiments were made using pure CF3Br and CF2HCl gases as well as the CF3Br/CF2HCl mixture with a pressure ratio of 1/1 for the formation of the molecular flow and a shock wave. It is found that the efficiency of dissociation of molecules in the shock wave and in the beam incident on the surface is much higher than in an unperturbed flow. It is shown (for CF3Br as an example) that the dissociation yield in the case of excitation of molecules in the shock wave and in the beam incident on the surface increases strongly (by 5–10 times) as compared to the dissociation yield in the unperturbed flow, while the dissociation threshold decreases substantially (by 3–5 times). It is also established that in the case of irradiation of molecules in the mixture, a mutual strong increase in the efficiency of their dissociation is observed as compared to the case when molecules are exposed to radiation separately. This makes it possible to induce isotope-selective laser IR dissociation of molecules for low excitation energy densities (Φ ≤ 1.0–1.5 J/cm2), thus improving the selectivity of the process. This is demonstrated for dissociation of these molecules in the shock wave, which is selective in chlorine and bromine isotopes. We obtained enrichment coefficients Kenr(35Cl/37Cl) = 0.90 ± 0.05 in the residual CF2HCl gas and Kenr(79Br/81Br) = 1.20 ± 0.09 in the formed product (Br2) under laser irradiation of the CF2HCl/CF3Br = 1/1 mixture and CF3Br molecules at the 9R(30) CO2-laser line (at a frequency 1084.635 cm–1) for energy density Φ ≈ 1.3 J/cm2. The application of the results for laser isotope separation is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. N. Makarov, Phys. Usp. 58, 670 (2015).

    Article  ADS  Google Scholar 

  2. J. W. Eerkens and J. Kim, AIChE J. 56, 2331 (2010).

    Google Scholar 

  3. G. N. Makarov and A. N. Petin, JETP Lett. 93, 109 (2011).

    Article  ADS  Google Scholar 

  4. G. N. Makarov and A. N. Petin, JETP Lett. 97, 76 (2013).

    Article  ADS  Google Scholar 

  5. K. A. Lyakhov, H. J. Lee, and A. N. Pechen, Separ. Purif. Technol. 176, 402 (2017).

    Article  Google Scholar 

  6. K. A. Lyakhov, A. N. Pechen, and H. J. Lee, AIP Adv. 8, 095325 (2018).

    Article  ADS  Google Scholar 

  7. V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. D. Ogurok, and E. A. Ryabov, J. Exp. Theor. Phys. 125, 531 (2017).

    Article  ADS  Google Scholar 

  8. G. N. Makarov, Phys. Usp. 61, 617 (2018).

    Article  ADS  Google Scholar 

  9. V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. D. Ogurok, and E. A. Ryabov, Quantum Electron. 48, 157 (2018).

    Article  ADS  Google Scholar 

  10. V. M. Apatin, G. N. Makarov, N.-D. D. Ogurok, A. N. Petin, and E. A. Ryabov, J. Exp. Theor. Phys. 127, 244 (2018).

    Article  ADS  Google Scholar 

  11. V. N. Lokhman, G. N. Makarov, A. L. Malinovskii, A. N. Petin, D. G. Poydashev, and E. A. Ryabov, Laser Phys. 28, 105703 (2018).

    Article  ADS  Google Scholar 

  12. G. N. Makarov, N.-D. D. Ogurok, and A. N. Petin, Quantum Electron. 48, 667 (2018).

    Article  ADS  Google Scholar 

  13. V. N. Lokhman, G. N. Makarov, A. N. Petin, D. G. Poydashev, and E. A. Ryabov, J. Exp. Theor. Phys. 128, 188 (2019).

    Article  ADS  Google Scholar 

  14. A. N. Petin and G. N. Makarov, Quantum Electron. 49, 593 (2019).

    Article  ADS  Google Scholar 

  15. V. M. Apatin, V. N. Lokhman, G. N. Makarov, A. L. Malinovskii, A. N. Petin, N.-D. D. Ogurok, D. G. Poidashev, and E. A. Ryabov, Opt. Spectrosc. 127, 61 (2019).

    Article  ADS  Google Scholar 

  16. G. N. Makarov, Phys. Usp. 63, 245 (2020).

    Article  ADS  Google Scholar 

  17. G. N. Makarov and A. N. Petin, JETP Lett. 111, 325 (2020).

    Article  ADS  Google Scholar 

  18. G. N. Makarov and A. N. Petin, JETP Lett. 112, 213 (2020).

    Article  ADS  Google Scholar 

  19. V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and E. A. Ryabov, Multiple Photon Infrared LaserPhotophysics and Photochemistry (Harwood Academic, Chur, 1985).

    Google Scholar 

  20. Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Vol. 35 of Topics in Current Physics, Ed. by C. D. Cantrell (Springer, Berlin, 1986).

    Google Scholar 

  21. J. L. Lyman, G. P. Quigley, and O. P. Judd, Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Ed. by C. D. Cantrell (Springer, Berlin, 1986), p. 34.

    Google Scholar 

  22. G. N. Makarov, Phys. Usp. 48, 37 (2005).

    Article  ADS  Google Scholar 

  23. V. S. Letokhov and E. A. Ryabov, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 1, p. 445 [in Russian].

    Google Scholar 

  24. V. Yu. Baranov, A. P. Dyad’kin, V. S. Letokhov, E. A. Ryabov, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 1, p. 460 [in Russian].

    Google Scholar 

  25. V. Yu. Baranov, A. P. Dyadkin, D. D. Malynta, V. A. Kuzmenko, S. V. Pigulsky, V. S. Letokhov, V. B. Laptev, E. A. Ryabov, I. V. Yarovoi, V. B. Zarin, and A. S. Podorashy, Proc. SPIE 4165, 314 (2000).

    Article  ADS  Google Scholar 

  26. http://www.silex.com.au.

  27. SILEX Process. www.chemeurope.com/en/encyclopedia/Silex_Process.html.

  28. SILEX Uranium Enrichment, SILEX Annual Report 2019. http://www.silex.com.au.

  29. J. L. Lyman, Report LA-UR-05-3786 (Los Alamos Natl. Lab., 2005).

  30. G. N. Makarov and A. N. Petin, Quantum Electron. 46, 248 (2016).

    Article  ADS  Google Scholar 

  31. G. N. Makarov and A. N. Petin, Chem. Phys. Lett. 323, 345 (2000).

    Article  ADS  Google Scholar 

  32. G. N. Makarov and A. N. Petin, J. Exp. Theor. Phys. 92, 1 (2001).

    Article  ADS  Google Scholar 

  33. G. N. Makarov and A. N. Petin, Chem. Phys. 266, 125 (2001).

    Article  Google Scholar 

  34. V. M. Apatin, V. N. Lokhman, G. N. Makarov, N.‑D. D. Ogurok, and A. N. Petin, Opt. Spectrosc. 91, 852 (2001).

    Article  ADS  Google Scholar 

  35. G. N. Makarov, S. A. Mochalov, and A. N. Petin, Quantum Electron. 31, 263 (2001).

    Article  ADS  Google Scholar 

  36. G. N. Makarov, Phys. Usp. 46, 889 (2003).

    Article  ADS  Google Scholar 

  37. R. S. McDowell, B. J. Krohn, H. Flicker, and M. C. Vasquez, Spectrochim. Acta, A 42, 351 (1986).

    Article  ADS  Google Scholar 

  38. G. Baldacchini, S. Marchetti, and V. Montelatici, J. Mol. Spectrosc. 91, 80 (1982).

    Article  ADS  Google Scholar 

  39. W. Fuss, Spectrochim. Acta, A 38, 829 (1982).

    Article  ADS  Google Scholar 

  40. A. Pietropolli Charmet, P. Stoppa, P. Toninello, A. Baldacci, and S. Giorgiani, Phys. Chem. Chem. Phys. 8, 2491 (2006).

    Article  Google Scholar 

  41. M. Snels and G. D’Amico, J. Mol. Spectrosc. 209, 1 (2001).

    Article  ADS  Google Scholar 

  42. D. M. Cox and J. Elliot, Spectrosc. Lett. 12, 275 (1979).

    Article  ADS  Google Scholar 

  43. V. Yu. Baranov, E. I. Kozlova, Yu. A. Kolesnikov, and A. A. Kotov, in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 1, p. 474 [in Russian].

    Google Scholar 

  44. J. B. Anderson, in Gasdynamics, Molecular Beams and Low Density Gasdynamics, Ed. by P. P. Wegener (Marcel Dekker, New York, 1974).

    Google Scholar 

  45. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967).

  46. G. N. Abramovich, Applied Gas Dynamics, Part 1 (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  47. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation in Shock Waves (Nauka, Moscow, 1965; Springer, Berlin, 1967).

  48. R. Kadibelban, R. Ahrens-Botzong, and P. Hess, Z. Naturforsch. 37a, 271 (1982).

  49. V. Tosa, R. Bruzzese, C. De Listo, and D. Tescione, Laser Chem. 15, 47 (1994).

    Article  Google Scholar 

  50. M. Drouin, M. Gauthier, R. Pilon, P. A. Hackett, and C. Willis, Chem. Phys. Lett. 60, 16 (1978).

    Article  ADS  Google Scholar 

  51. D. S. King and J. C. Stephenson, Chem. Phys. Lett. 66, 33 (1979).

    Article  ADS  Google Scholar 

  52. Chemical Bond Dissociation Energies, Ionisation Potentials and Electron Affinity, Ed. by V. N. Kondrat’ev (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  53. K. Narahari Rao, in Molecular Spectroscopy: Modern Research (Academic, New York, 1985), Vol. 3, Chap. 3.

    Google Scholar 

  54. R. S. Karve, S. K. Sarkar, K. V. S. Rama Rao, and J. P. Mittal, Appl. Phys. B 53, 108 (1991).

    Article  ADS  Google Scholar 

  55. B. H. Mahan, J. Chem. Phys. 46, 98 (1967).

    Article  ADS  Google Scholar 

  56. J. T. Yardley, in Introduction to Molecular Energy Transfer (Academic, New York, 1980), p. 130.

    Google Scholar 

  57. J. G. McLaughlin, M. Poliakoff, and J. J. Turner, J. Mol. Struct. 82, 51 (1982).

    Article  ADS  Google Scholar 

  58. V. N. Lokhman, G. N. Makarov, E. A. Ryabov, and M. V. Sotnikov, Quantum Electron. 26, 79 (1996).

    Article  ADS  Google Scholar 

  59. A. V. Evseev, A. A. Puretskii, and V. V. Tyakht, Sov. Phys. JETP 61, 34 (1985).

    Google Scholar 

  60. S. Kato, S. Satooka, T. Oyama, et al., in Proceedings of the International Symposium on Advanced Nuclear Energy Recearch, Near-Future Chemistry in Nuclear Energy Field, February 15–16, 1989 (Ibaraki, Tokyo, Japan, 1989), p. 53.

  61. K. Takeuchi, H. Tashiro, S. Kato, et al., J. Nucl. Sci. Technol. 26, 301 (1989).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to D.G. Poidashev and E.A. Ryabov for cooperation and useful discussions.

Funding

This study was supported in part by the Russian Foundation for Basic Research (project no. 18-02-00242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Makarov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, G.N., Petin, A.N. Laser Isotope-Selective IR Dissociation of Molecules with a Small Isotopic Shift in Absorption Spectra in Nonequilibrium Thermodynamic Shock Conditions. J. Exp. Theor. Phys. 132, 233–246 (2021). https://doi.org/10.1134/S1063776121020126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121020126

Navigation