Skip to main content
Log in

Wave Processes in Rotating Compressible Astrophysical Plasma Flows with Stable Stratification

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The wave processes in a rotating layer of compressible astrophysical plasma with a stable stratification and a linear entropy profile are studied theoretically. The compressibility is taken into account in the anelastic approximation. In this approximation the acoustic waves are filtered out, the system contains terms with a potential temperature (entropy), and the continuity equation contains an initial stratified density profile. The Coriolis force in the magnetohydrodynamic equations for a compressible astrophysical plasma is considered in four different approximations: a traditional f-plane, a nontraditional f-plane (given the horizontal component of the Coriolis force), a traditional β-plane, and a nontraditional β-plane. Linear and nonlinear theories of wave processes have been developed for each Coriolis force approximation under consideration. New types of waves have been found, with the rotation, magnetic field, gravity, and compressibility serving as their restoring mechanisms. The compressibility effects are represented in the new dispersion equations by the Brunt–Väisälä frequency for compressible stratified flows dependent on both initial density and pressure profiles. All of the realizable types of three-wave interactions have been revealed through a qualitative analysis of the dispersion curves. A system of equations for the amplitudes of interacting waves and the growth rates of parametric instabilities have been derived by the multiscale expansion method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. M. S. Miesch and P. A. Gilman, Solar Phys. 220, 287 (2004).

    Article  ADS  Google Scholar 

  2. D. W. Hughes, R. Rosner, and N. O. Weiss, The Solar Tachocline (Cambridge Univ. Press, Cambridge, 2007).

    Book  Google Scholar 

  3. P. A. Gilman, Astrophys. J. Lett. 544, L79 (2000).

    Article  ADS  Google Scholar 

  4. M. Dikpati and P. A. Gilman, Astrophys. J. 551, 536 (2001).

    Article  ADS  Google Scholar 

  5. T. V. Zaqarashvili, R. Oliver, J. L. Ballester, and B. M. Shergelashvili, Astron. Astrophys. 470, 815 (2007).

    Article  ADS  Google Scholar 

  6. T. V. Zaqarashvili, R. Oliver, J. L. Ballester, et al., Astron. Astropys. 532, A139 (2011).

    Article  Google Scholar 

  7. J. Philidet, C. Gissinger, F. Ligniéres, and L. Petitdemange, Geophys. Astrophys. Fluid Dyn. 114, 336 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  8. J. M. Stone, J. F. Hawley, C. F. Gammie, and S. A. Balbus, Astrophys. J. 463, 656 (1996).

    Article  ADS  Google Scholar 

  9. K. Batygin, S. Stanley, and D. J. Stevenson, Astrophys. J. 776, 53 (2013).

    Article  ADS  Google Scholar 

  10. V. G. A. Böning, H. Hu, and L. Gizon, Astron. Astrophys. 629, A26 (2019).

    Article  ADS  Google Scholar 

  11. B. Loeptien, L. Gizon, A. C. Birch, et al., Nat. Astron. 2, 568 (2018).

    Article  ADS  Google Scholar 

  12. M. Dikpati, B. Belucz, P. A. Gilman, and S. W. McIntosh, Astrophys. J. 862, 159 (2018).

    Article  ADS  Google Scholar 

  13. S. W. McIntosh, W. J. Cramer, M. P. Marcano, and R. J. Leamon, Nat. Astron. 1, 0086 (2017).

  14. T. V. Zaqarashvili and E. Gurgenashvili, Front. Astron. Space Sci. 6, 7 (2018).

    Article  ADS  Google Scholar 

  15. L. Gizon, D. Fournier, and M. Albekioni, arXiv: 2008.02185v1.

  16. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 125, 597 (2017).

    Article  ADS  Google Scholar 

  17. M. A. Fedotova, D. A. Klimachkov, and A. S. Petrosyan, Plasma Phys. Rep. 46, 50 (2020).

    Article  ADS  Google Scholar 

  18. M. A. Fedotova and A. S. Petrosyan, J. Exp. Theor. Phys. 131, 337 (2020).

    Article  ADS  Google Scholar 

  19. M. Dikpati, P. S. Cally, S. W. McIntosh, et al., Sci. Rep. 7, 14750 (2017).

    Article  ADS  Google Scholar 

  20. M. Dikpati and S. W. McIntosh, Space Weather 18, e2018SW002109 (2020).

  21. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasma and Atmosphere (Energoatomizdat, Moscow, 1989; Gordon and Breach Science, 1991).

  22. O. G. Onishchenko, O. A. Pokhotelov, and N. M. Astafieva, Phys. Usp. 51, 577 (2008).

    Article  ADS  Google Scholar 

  23. D. A. Klimachkov and A. S. Petrosyan, Phys. Lett. A 381, 106 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. S. Petrosyan, D. A. Klimachkov, M. A. Fedotova, and T. A. Zinyakov, Atmosphere 11, 314 (2020).

    Article  ADS  Google Scholar 

  25. G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge Univ. Press, Cambridge, 2006).

    Book  MATH  Google Scholar 

  26. B. P. Brown, G. M. Vasil, and E. G. Zweibel, Astrophys. J. 756, 109 (2012).

    Article  ADS  Google Scholar 

  27. A. S. Almgrenet, J. B. Bell, A. Nonaka, and M. Zingale, Comput. Sci. Eng. 11 (2), 24 (2009).

    Article  Google Scholar 

  28. G. K. Batchelor, Quart. J. R. Meteor. Soc. 79 (340), 224 (1953).

    Article  ADS  Google Scholar 

  29. J. G. Charney and Y. Ogura, J. Meteor. Soc. Jpn., Ser. II 38 (6), 19a (1960).

    Google Scholar 

  30. D. O. Gough, J. Atmos. Sci. 26, 448 (1969).

    Article  ADS  Google Scholar 

  31. P. R. Bannon, J. Atmos. Sci. 53, 3618 (1996).

    Article  ADS  Google Scholar 

  32. M. A. Calkins, K. Julien, and P. Marti, Proc. R. Soc. London, Ser. A 471, 20140689 (2015).

    ADS  Google Scholar 

  33. S. Paolucci, Sandia Natl. Lab. Rep. SAND 82-8277 (Sandia Natl. Lab., Livermore, CA, 1982).

    Google Scholar 

  34. N. Botta, R. Klein, and A. Almgren, Summary Rep. No. 55 (Potsdam Inst. for Climate Impact Research, 1999).

  35. R. Klein, N. Botta, T. Schneider, et al., J. Eng. Math. 39, 261 (2001).

    Article  Google Scholar 

  36. S. I. Braginsky and P. H. Roberts, Geophys. Astrophys. Fluid Dyn. 79, 1 (1995).

    Article  ADS  Google Scholar 

  37. G. A. Glatzmaier and P. H. Roberts, Phys. D (Amsterdam, Neth.) 97, 81 (1996).

  38. P. Olson and U. R. Christensen, Earth Planet. Sci. Lett. 250, 561 (2006).

    Article  ADS  Google Scholar 

  39. C. A. Jones, K. M. Kuzanyan, and R. H. Mitchell, J. Fluid Mech. 634, 291 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  40. P. A. Gilman and G. A. Glatzmaier, Astrophys. J. Suppl. Ser. 45, 335 (1981).

    Article  ADS  Google Scholar 

  41. R. K. Yadav and J. Bloxham, Proc. Nat. Astron. Soc. (2020). https://doi.org/10.1073/pnas.2000317117

  42. G. A. Glatzmaier, J. Comput. Phys. 55, 461 (1984).

    Article  ADS  Google Scholar 

  43. S. R. Lantz and Y. Fan, Astrophys. J. Suppl. Ser. 121, 247 (1999).

    Article  ADS  Google Scholar 

  44. M. S. Miesch, J. R. Elliott, J. Toomre, et al., Astrophys. J. 532, 593 (2000).

    Article  ADS  Google Scholar 

  45. A. S. Brun, M. S. Miesch, and J. Toomre, Astrophys. J. 614, 1073 (2004).

    Article  ADS  Google Scholar 

  46. B. P. Brown, M. K. Browning, A. S. Brun, et al., Astrophys. J. 689, 1354 (2008).

    Article  ADS  Google Scholar 

  47. B. P. Brown, M. S. Miesch, M. K. Browning, et al., Astrophys. J. 731, 69 (2011).

    Article  ADS  Google Scholar 

  48. P. K. Smolarkiewicz and P. Charbonneau, J. Comput. Phys. 236, 608 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  49. J. Goldstein, R. H. D. Townsend, and E. G. Zweibel, Astrophys. J. 881, 66 (2019).

    Article  ADS  Google Scholar 

  50. D. J. Raymond, Sound, Inertia-Gravity Waves, and Lamb Waves. http://kestrel.nmt.edu/~raymond/classes/ph589/notes/ssmodes/ssmodes.pdf.

  51. J. I. Yano, J. Fluid Mech. 810, 475 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  52. G. Falkovich, Fluid Mechanics: A Short Course for Physicists (Cambridge Univ. Press, Cambridge, 2011).

    Book  MATH  Google Scholar 

  53. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 122, 832 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the “Basis” Foundation for the Advancement of Theoretical Physics and Mathematics and the Russian Foundation for Basic Research (project no. 19-02-00016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fedotova.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotova, M.A., Petrosyan, A.S. Wave Processes in Rotating Compressible Astrophysical Plasma Flows with Stable Stratification. J. Exp. Theor. Phys. 131, 1032–1055 (2020). https://doi.org/10.1134/S106377612012002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612012002X

Navigation