Skip to main content
Log in

Large-Scale Compressibility in Rotating Flows of Astrophysical Plasma in the Shallow Water Approximation

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Two systems of magnetohydrodynamic equations in the shallow water approximation are proposed as a basis for studies in the field of plasma astrophysics: the system of equations with a full allowance for the Coriolis force and the system of equations on the β-plane in which the changes of the Coriolis parameter are linear in coordinate. Both systems of equations take into account such fundamentally important phenomena in plasma astrophysics as the compressibility and external magnetic field effects, increasing significantly the potential for applying these equations to study astrophysical objects. Compressibility in plasma astrophysics is shown to change significantly the dispersion laws for magneto-Poincare, magnetostrophic, and magneto-Rossby waves. The same nonlinear interactions as those in the absence of compressibility have been found to be realized in the case of a compressible rotating plasma. Three-wave equations in the weak nonlinearity approximation, in which the interaction coefficients depend on plasma large-scale compressibility and thermodynamic characteristics, have been derived by the method of multiscale expansions. Expressions for the growth rates of the parametric instabilities of three-wave interactions with large-scale compressibility have been derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. W. McIntosh, W. J. Cramer, M. P. Marcano, and R. J. Leamon, Nat. Astron. 1, 0086 (2017).

  2. B. Loeptien, L. Gizon, A. C. Birch, J. Schou, B. Proxauf, T. L. Duvall, Jr., R. S. Bogart, and U. R. Christensen, Nat. Astron. 2, 568 (2018).

    Article  ADS  Google Scholar 

  3. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 123, 520 (2016).

    Article  ADS  Google Scholar 

  4. A. M. Balk, Astrophys. J. 796, 143 (2014).

    Article  ADS  Google Scholar 

  5. X. Márquez-Artavia, C. A. Jones, and S. M. Tobias, Geophys. Astrophys. Fluid Dyn. 111, 282 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  6. P. A. Gilman, Astrophys. J. Lett. 544, L79 (2000).

    Article  ADS  Google Scholar 

  7. M. S. Miesch and P. A. Gilman, Solar Phys. 220, 287 (2004).

    Article  ADS  Google Scholar 

  8. T. V. Zaqarashvili, R. Oliver, and J. L. Ballester, Astrophys. J. Lett. 691, L41 (2009).

    Article  ADS  Google Scholar 

  9. M. Dikpati, P. S. Cally, S. W. McIntosh, and E. Heifetz, Nat. Sci. Rep. 7, 14750 (2017).

    Article  ADS  Google Scholar 

  10. M. Dikpati, S. W. McIntosh, G. Bothun, P. S. Cally, S. S. Ghosh, P. A. Gilman, and O. M. Umurhan, Astrophys. J. 853, 144 (2018).

    Article  ADS  Google Scholar 

  11. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 25, 269 (1999).

    ADS  Google Scholar 

  12. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 36, 848 (2010).

    Article  ADS  Google Scholar 

  13. A. Spitkovsky, Y. Levin, and G. Ushomirsky, Astrophys. J. 566, 1018 (2002).

    Article  ADS  Google Scholar 

  14. K. Heng and A. Spitkovsky, Astrophys. J. 703, 1819 (2009).

    Article  ADS  Google Scholar 

  15. J. Y.-K. Cho, Phil. Trans. R. Soc. London, Ser. A 366, 4477 (2008).

    Article  ADS  Google Scholar 

  16. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 122, 832 (2016).

    Article  ADS  Google Scholar 

  17. D. W. Hughes, R. Rosner, and N. O. Weiss, The Solar Tachocline (Cambridge Univ. Press, Cambridge, 2007).

  18. T. V. Zaqarashvili, R. Oliver, J. L. Ballester, and B. M. Shergelashvili, Astron. Astrophys. 470, 815 (2007).

    Article  ADS  Google Scholar 

  19. T. V. Zaqarashvili, R. Oliver, J. L. Ballester, M. Carbonell, M. L. Khodachenko, H. Lammer, M. Leitzinger, and P. Odert, Astron. Astrophys. 532, A139 (2011).

    Article  ADS  Google Scholar 

  20. B. Raphaldini and C. F. M. Raupp, Astrophys. J. 799, 78 (2015).

    Article  ADS  Google Scholar 

  21. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasma and in the Atmosphere (Energoatomizdat, Moscow, 1989; Gordon and Breach Science, Philadelphia, 1992).

  22. G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge Univ. Press, Cambridge, 2006).

    Book  MATH  Google Scholar 

  23. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 125, 597 (2017).

    Article  ADS  Google Scholar 

  24. V. Zeitlin, Nonlin. Proc. Geophys. 20, 893 (2013).

    Article  ADS  Google Scholar 

  25. K. V. Karelsky, A. S. Petrosyan, and S. V. Tarasevich, J. Exp. Theor. Phys. 113, 530 (2011).

    Article  ADS  Google Scholar 

  26. K. V. Karelsky, A. S. Petrosyan, and S. V. Tarasevich, Phys. Scr. 155, 014024 (2013).

    Article  Google Scholar 

  27. H. de Sterck, Phys. Plasmas 8, 3293 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  28. P. J. Dellar, Phys. Plasmas 10, 581 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  29. K. V. Karelsky, A. S. Petrosyan, and A. V. Chernyak, J. Exp. Theor. Phys. 114, 1058 (2012).

    Article  ADS  Google Scholar 

  30. K. V. Karel’skii, A. S. Petrosyan, and A. V. Chernyak, J. Exp. Theor. Phys. 116, 680 (2013).

    Article  ADS  Google Scholar 

  31. D. A. Klimachkov and A. S. Petrosyan, Phys. Lett. A 381, 106 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  32. F. Dolzhanskii, Principles of Geophysical Hydrodynamics (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  33. G. Falkovich, Fluid Mechanics: A Short Course for Physicists (Cambridge Univ. Press, Cambridge, 2011).

    Book  MATH  Google Scholar 

  34. L. Ostrovsky, Asymptotic Perturbation Theory of Waves (World Scientific, Singapore, 2014).

    Book  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the reviewer for careful reading of the manuscript and useful remarks. This work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” and by the Presidium of the Russian Academy of Sciences (program no. 28 “Cosmos: Research of Fundamental Interactions and Their Relation”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Klimachkov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimachkov, D.A., Petrosyan, A.S. Large-Scale Compressibility in Rotating Flows of Astrophysical Plasma in the Shallow Water Approximation. J. Exp. Theor. Phys. 127, 1136–1152 (2018). https://doi.org/10.1134/S1063776118120166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118120166

Navigation