Skip to main content
Log in

Atomic and Electronic Structure of SiOx Films Obtained with Hydrogen Electron Cyclotron Resonance Plasma

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The silicon oxide thin films obtained by thermal SiO2 treatment in hydrogen electron cyclotron resonance plasma at various exposure times are investigated. Using X-ray photoelectron spectroscopy, we have established that such treatment leads to a significant oxygen depletion of thermal SiO2, the more so the longer the treatment time. The atomic structure of the SiOx< 2 films obtained in this way is described by the random bonding model. The presence of oxygen vacancies in the plasma-treated films is confirmed by comparing the experimental valence band photoelectron spectra and those calculated from first principles, which allows the parameter x to be estimated. We show that thermal silicon oxide films treated in hydrogen plasma can be successfully used as a storage medium for a nonvolatile resistive memory cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. Zhou, L. Guckert, Y. F. Chang, E. E. Swartzlander, and J. Lee, Appl. Phys. Lett. 107, 183501 (2015).

    Article  ADS  Google Scholar 

  2. A. Mehonic, A. L. Shluger, D. Gao, I. Valov, E. Miranda, D. Ielmini, A. Bricalli, E. Ambrosi, C. Li, J. J. Yang, Q. F. Xia, and A. J. Kenyon, Adv. Mater. 30, 1801187 (2018).

    Article  Google Scholar 

  3. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, Rep. Progr. Phys. 75, 076502 (2012).

    Article  ADS  Google Scholar 

  4. A. A. Chernov, D. R. Islamov, A. A. Pik’nik, T. V. Perevalov, and V. A. Gritsenko, ECS Trans. 75, 95 (2017).

    Article  Google Scholar 

  5. V. Sh. Aliev, V. N. Votentsev, A. K. Gutakovskii, S. M. Maroshina, and D. V. Shcheglov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 1, 454 (2007).

    Article  Google Scholar 

  6. Y. Y. Chen, L. Goux, J. Swerts, M. Toeller, C. Adelmann, J. Kittl, M. Jurczak, G. Groeseneken, and D. J. Wouters, IEEE Electron. Dev. Lett. 33, 483 (2012).

    Article  ADS  Google Scholar 

  7. V. S. Aliev, A. K. Gerasimova, V. N. Kruchinin, V. A. Gritsenko, I. P. Prosvirin, and I. A. Badmaeva, Mater. Res. Express 3, 085008 (2016).

    Article  ADS  Google Scholar 

  8. P. Giannozzi, O. Andreussi, T. Brumme, et al., J. Phys.: Condens. Matter 29, 465901 (2017).

    Google Scholar 

  9. V. A. Gritsenko, T. V. Perevalov, V. A. Volodin, V. N. Kruchinin, A. K. Gerasimova, and I. P. Prosvirin, JETP Lett. 108, 226 (2018).

    Article  ADS  Google Scholar 

  10. D. R. Islamov, V. A. Gritsenko, T. V. Perevalov, O. M. Orlov, and G. Y. Krasnikov, Appl. Phys. Lett. 109, 052901 (2016).

    Article  ADS  Google Scholar 

  11. T. V. Perevalov, V. A. Volodin, Yu. N. Novikov, G. N. Kamaev, V. A. Gritsenko, and I. P. Prosvirin, Phys. Solid State 61, 2560 (2019).

    Article  ADS  Google Scholar 

  12. A. Barranco, J. A. Mejias, J. P. Espinos, A. Caballero, A. R. Gonzalez-Elipe, and F. Yubero, J. Vac. Sci. Technol. A 19, 136 (2001).

    Article  ADS  Google Scholar 

  13. H. R. Philipp, J. Noncryst. Sol. 810, 627 (1972).

  14. Y. N. Novikov and V. A. Gritsenko, J. Appl. Phys. 110, 014107 (2011).

    Article  ADS  Google Scholar 

  15. F. G. Bell and L. Ley, Phys. Rev. B 37, 8383 (1988).

    Article  ADS  Google Scholar 

  16. K. A. Nasyrov, S. S. Shaimeev, V. A. Gritsenko, and J. H. Han, J. Appl. Phys. 105, 123709 (2009).

    Article  ADS  Google Scholar 

  17. T. V. Perevalov, V. A. Gritsenko, D. R. Islamov, and I. P. Prosvirin, JETP Lett. 107, 55 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-19-00286). The simulations were performed at the computational cluster of the Data Processing Center of the Novosibirsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Perevalov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevalov, T.V., Iskhakzai, R.M., Aliev, V.S. et al. Atomic and Electronic Structure of SiOx Films Obtained with Hydrogen Electron Cyclotron Resonance Plasma. J. Exp. Theor. Phys. 131, 940–944 (2020). https://doi.org/10.1134/S1063776120110084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120110084

Navigation