Skip to main content
Log in

Nanosized Potential Fluctuations in SiOx Synthesized by Plasma-Enhanced Chemical Vapor Deposition

  • SURFACE PHYSICS AND THIN FILMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This work was devoted to studying the atomic structure and electron spectrum of a-SiOx : H films created on silicon and glass substrates by means of plasma-enhanced chemical vapor deposition (PECVD). Depending on the conditions of oxygen supply into the reactor, the stoichiometric parameter x of the films was varied from 0.57 to 2. The structure of the films and the specific features of their electron structure were characterized depending on the parameter x with a complex of structural and optical methods and ab initio quantum-chemical simulation for the model SiOx structure. The studied SiOx : H films were established to consist predominantly of silicon suboxides SiOy, SiO2 clusters, and amorphous silicon. Based on the spatial fluctuations of their chemical composition, the model of bandgap width and potential fluctuations was proposed for SiOx electrons and holes. The obtained data would provide the charge transport in a-SiOx : H films with more precise modeling important for the creation of nonvolatile random-access memory (RAM) elements and memristors on their basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. Montesi, M. Buckwell, K. Zarudnyi, L. Garnett, S. Hudziak, A. Mehonic, and A. J. Kenyon, IEEE Trans. Nanotechnol. 15, 428 (2016).

    Article  ADS  Google Scholar 

  2. A. Mehonic, A. L. Shluger, D. Gao, I. Valov, E. Miranda, D. Ielmini, A. Bricalli, E. Ambrosi, C. Li, J. J. Yang, Q. F. Xia, and A. J. Kenyon, Adv. Mater. 30, 1801187 (2018).

    Article  Google Scholar 

  3. C.-C. Hsieh, Y.-F. Chang, Y.-C. Chen, X. Wu, M. Guo, F. Zhou, S. Kim, B. Fowler, C.-Y. Lin, C.-H. Pan, T.‑C. Chang, and J. C. Lee, in Review of Recently Progress on Neural Electronics and Memcomputing Applications in Intrinsic SiOx Based Resistive Switching Memory (IntechOpen, Rijeka, 2017), p. 227.

    Google Scholar 

  4. S. Sahoo and S. R. S. Prabaharan, J. Nanosci. Nanotechnol. 17, 72 (2017).

    Article  Google Scholar 

  5. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, Rep. Progr. Phys. 75, 076502 (2012).

    Article  ADS  Google Scholar 

  6. V. A. Voronkovskii, V. S. Aliev, A. K. Gerasimova, and D. R. Islamov, Mater. Res. Express 5, 016402 (2018).

    Article  ADS  Google Scholar 

  7. H.-P. Ma, J.-H. Yang, J.-G. Yang, L.-Y. Zhu, W. Huang, G.-J. Yuan, J.-J. Feng, T.-C. Jen, and H.‑L. Lu, Nanomaterials 9, 55 (2019).

    Article  Google Scholar 

  8. N. Tomozeiu, Thin Solid Films 516, 8199 (2008).

    Article  ADS  Google Scholar 

  9. V. A. Gritsenko, Phys. Usp. 51, 699 (2008).

    Article  ADS  Google Scholar 

  10. T. W. Hickmott and J. E. Baglin, J. Appl. Phys. 50, 317 (1979).

    Article  ADS  Google Scholar 

  11. D. E. Vazquez-Valerdi, J. A. Luna-Lopez, J. Carrillo-Lopez, G. Garcia-Salgado, A. Benitez-Lara, and N. D. Espinosa-Torres, Nanoscale Res. Lett. 9, 422 (2014).

    Article  ADS  Google Scholar 

  12. J. H. Scofield, J. Electron Spectrosc. Rel. Phenom. 8, 129 (1976).

    Article  Google Scholar 

  13. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. DalCorso, S. de Gironcoli, P. Delugas, et al., J. Phys.: Condens. Mater. 29, 465901 (2017).

    Google Scholar 

  14. T. V. Perevalov, D. R. Islamov, and I. G. Chernov, JETP Lett. 107, 761 (2018).

    Article  ADS  Google Scholar 

  15. V. A. Gritsenko, T. V. Perevalov, V. A. Volodin, V. N. Kruchinin, A. K. Gerasimova, and I. P. Prosvirin, JETP Lett. 108, 226 (2018).

    Article  ADS  Google Scholar 

  16. F. G. Bell and L. Ley, Phys. Rev. B 37, 8383 (1988).

    Article  ADS  Google Scholar 

  17. P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A 4, 689 (1986).

    Article  ADS  Google Scholar 

  18. J. E. J. Smith, M. H. Brodsky, B. I. Crowder, and M. I. Nathan, Phys. Rev. Lett. 26, 642 (1971).

    Article  ADS  Google Scholar 

  19. V. A. Volodin and D. I. Koshelev, J. Raman Spectrosc. 44, 1760 (2013).

    Article  ADS  Google Scholar 

  20. D. M. Zhigunov, G. N. Kamaev, P. K. Kashkarov, and V. A. Volodin, Appl. Phys. Lett. 113, 023101 (2018).

    Article  ADS  Google Scholar 

  21. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  ADS  Google Scholar 

  22. Y. Pan, F. Inam, M. Zhang, and D. A. Drabold, Phys. Rev. Lett. 100, 206403 (2008).

    Article  ADS  Google Scholar 

  23. D. T. Pierce and W. E. Spicer, Phys. Rev. B 5, 3017 (1972).

    Article  ADS  Google Scholar 

  24. N. M. Park, T. S. Kim, and S. J. Park, Appl. Phys. Lett. 78, 2575 (2001).

    Article  ADS  Google Scholar 

  25. K. A. Nasyrov, S. S. Shaimeev, V. A. Gritsenko, and J. H. Han, J. Appl. Phys. 105, 123709 (2009).

    Article  ADS  Google Scholar 

  26. A. M. Goodman, Phys. Rev. 152, 780 (1966).

    Article  ADS  Google Scholar 

  27. A. A. Karpushin and V. A. Gritsenko, JETP Lett. 108, 127 (2018).

    Article  ADS  Google Scholar 

  28. K. Hubner, J. Non-Cryst. Solids 35, 1011 (1980).

    Article  ADS  Google Scholar 

  29. R. Zallen, in The Physics of Amorphous Solids (Wiley, New York, 1983), p. 318.

    Book  Google Scholar 

  30. D. R. Islamov, V. A. Gritsenko, T. V. Perevalov, O. M. Orlov, and G. Y. Krasnikov, Appl. Phys. Lett. 109, 052901 (2016).

    Article  ADS  Google Scholar 

  31. B. I. Shklovskii and A. L. Efros, Sov. Phys. Usp. 18, 845 (1975).

    Article  ADS  Google Scholar 

  32. H. Rinnert, M. Vergnat, and A. Burneau, J. Appl. Phys. 89, 237 (2001).

    Article  ADS  Google Scholar 

  33. Y.-F. Chang, Y.-T. Chen, F. Xue, Y. Wang, F. Zhou, B. Fowler, and J. C. Lee, in Proceedings of the 70th Device Research Conference DRC,2012, p. 278.

Download references

ACKNOWLEDGMENTS

Simulation was performed on the computational cluster of the Information and Computational Center of the Novosibirsk State University. The authors are grateful to G.K. Krivyakin for the HRTEM studies of our samples.

Funding

This study was supported by the conjoint grants of the Russian Scientific Foundation (project no. 1849-08001) and the Taiwan Ministry of Science and Technologies (MOST) (project no. 107-2923-E-009-001MY3). Quantum-chemical simulation was performed within project 19-19-00286 of the Russian Scientific Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Perevalov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevalov, T.V., Volodin, V.A., Novikov, Y.N. et al. Nanosized Potential Fluctuations in SiOx Synthesized by Plasma-Enhanced Chemical Vapor Deposition. Phys. Solid State 61, 2560–2568 (2019). https://doi.org/10.1134/S1063783419120370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419120370

Key words:

Navigation