Skip to main content
Log in

Molecular Dynamics Simulation of Elongation of Copper–Platinum Nanocontacts

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The formation of nanocontacts consisting of copper (Cu) and platinum (Pt) atoms at various temperatures (0–300 K), relative concentrations of platinum atoms (0–20%), and elongation directions [100], [110], and [111] is investigated using molecular dynamics method. The nanocontact breaking area has a complex amorphous structure, for the description of which we propose three models. To determine the quantitative contributions from these models to the structure of the breaking area, we analyze the short-range order using the radial distribution function. The temperature dependence of the nanocontact structure in the breaking area is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. The use of a chain of thermostats [35] ensures a faster stabilization of the Gibbs canonical distribution in systems consisting of atoms with different masses as compared to the case of original Nosé–Hoover thermostat [36, 37]. In our case, the use of the chain of thermostats is efficient because the mass of Pt atoms is three times higher than the mass of Cu atoms.

  2. A universal effective interatomic potential equally good for solving any problem obviously does not exist.

  3. Naturally, these models cannot describe the whole variety of the structures of the contact breaking area. However, contacts with such a structure were observed most often in the visual analysis of the results of MD simulation

REFERENCES

  1. A. L. Klavsyuk and A. M. Saletsky, Phys. Usp. 58, 933 (2015).

    Article  ADS  Google Scholar 

  2. J. M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, and L. J. de Jongh, Nature (London, U.K.) 375, 767 (1995).

    Article  ADS  Google Scholar 

  3. Y. N. Duan and J. M. Zhang, Mater. Res. Express 4, 095010 (2017).

    Article  ADS  Google Scholar 

  4. A. L. Klavsyuk, S. V. Kolesnikov, I. K. Gainullin, and A. M. Saletsky, JETP Lett. 93, 530 (2011).

    Article  ADS  Google Scholar 

  5. H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature (London, U.K.) 395, 780 (1998).

    Article  ADS  Google Scholar 

  6. A. L. Klavsyuk, S. V. Kolesnikov, I. K. Gainullin, and A. M. Saletsky, Eur. Phys. J. B 85, 331 (2012).

    Article  ADS  Google Scholar 

  7. F. Pauly, M. Dreher, J. K. Viljas, M. Häfner, J. C. Cuevas, and P. Nielaba, Phys. Rev. B 74, 235106 (2006).

    Article  ADS  Google Scholar 

  8. S. J. A. Koh, H. P. Lee, C. Lu, and Q. H. Cheng, Phys. Rev. B 72, 085414 (2005).

    Article  ADS  Google Scholar 

  9. S. V. Kolesnikov, I. N. Kolesnikova, A. L. Klavsyuk, and A. M. Saletsky, Europhys. Lett. 103, 48002 (2013).

    Article  ADS  Google Scholar 

  10. F. Pauly, J. K. Viljas, M. Bürkle, M. Dreher, P. Nielaba, and J. C. Cuevas, Phys. Rev. B 84, 195420 (2011).

    Article  ADS  Google Scholar 

  11. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science (Washington, DC, U. S.) 294, 1488 (2001).

    Article  ADS  Google Scholar 

  12. V. Rodrigues, T. Fuhrer, and D. Ugarte, Phys. Rev. Lett. 85, 4124 (2000).

    Article  ADS  Google Scholar 

  13. E. Amorim, A. Silva, A. Fazzio, and E. da Silva, Nanotechnology 18, 145701 (2007).

    Article  ADS  Google Scholar 

  14. E. Amorim, A. Silva, and E. da Silva, J. Phys. Chem. C 112, 15241 (2008).

    Article  Google Scholar 

  15. E. P. M. Amorim and E. Z. da Silva, Phys. Rev. B 81, 115463 (2010).

    Article  ADS  Google Scholar 

  16. S. R. Bahn and K. W. Jacobsen, Phys. Rev. Lett. 87, 266101 (2002).

    Article  ADS  Google Scholar 

  17. F. Sato, A. S. Moreira, J. Bettini, P. Z. Coura, S. Dantas, D. Ugarte, and D. Galvao, Phys. Rev. B 74, 193401 (2006).

    Article  ADS  Google Scholar 

  18. J. C. González, V. Rodrigues, J. Bettini, L. G. C. Rego, A. R. Rocha, P. Z. Coura, S. O. Dantas, F. Sato, D. S. Galvão, and D. Ugarte, Phys. Rev. Lett. 93, 126103 (2004).

    Article  ADS  Google Scholar 

  19. V. K. Sutrakar and D. R. Mahapatra, J. Phys.: Condens. Matter 20, 335206 (2008).

    Google Scholar 

  20. V. K. Sutrakar and D. R. Mahapatra, Nanotechnology 20, 045701 (2008).

    Article  ADS  Google Scholar 

  21. P. García-Mochales, S. Peláez, P. A. Serena, C. Guerrero, and R. Paredes, Model. Simul. Mater. Sci. Eng. 21, 045002 (2013).

    Article  ADS  Google Scholar 

  22. A. L. Klavsyuk, S. V. Kolesnikov, E. M. Smelova, and A. M. Saletsky, JETP Lett. 91, 158 (2010).

    Article  ADS  Google Scholar 

  23. A. L. Klavsyuk, S. V. Kolesnikov, E. M. Smelova, and A. M. Saletsky, Phys. Solid State 53, 2356 (2011)].

    Article  ADS  Google Scholar 

  24. T. Shiota, A. I. Mares, A. M. C. Valkering, T. H. Oosterkamp, and J. M. van Ruitenbeek, Phys. Rev. B 77, 125411 (2008).

    Article  ADS  Google Scholar 

  25. T. Kizuka and K. Monna, Phys. Rev. B 80, 205406 (2009).

    Article  ADS  Google Scholar 

  26. L. Hui, F. Pederiva, W. Guanghou, and W. Baolin, Chem. Phys. Lett. 381, 94 (2003).

    Article  ADS  Google Scholar 

  27. E. Zarechnaya, N. Skorodumova, S. Simak, B. Johansson, and E. Isaev, Comput. Mater. Sci. 43, 522 (2008).

    Article  Google Scholar 

  28. E. M. Smelova, K. M. Tsysar, and A. M. Saletsky, Phys. Chem. Chem. Phys. 16, 8360 (2014).

    Article  Google Scholar 

  29. J. Bettini, F. Sato, P. Z. Coura, S. O. Dantas, D. S. Galvaõ, and D. Ugarte, Nat. Nanotechnol. 1, 182 (2006).

    Article  ADS  Google Scholar 

  30. J. Wang, C. Jo, and R. Wu, Appl. Phys. Lett. 92, 032507 (2008).

    Article  ADS  Google Scholar 

  31. T. Haug, K. Perzlmaier, and C. H. Back, Phys. Rev. B 79, 024414 (2009).

    Article  ADS  Google Scholar 

  32. X. Cao, N. Wang, S. Jia, and Y. Shao, Anal. Chem. 85, 5040 (2013).

    Article  Google Scholar 

  33. K. Tian and A. Tiwari, Sci. Rep. 9, 3133 (2019).

    Article  ADS  Google Scholar 

  34. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  35. G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 87, 1117 (1996).

    Article  ADS  Google Scholar 

  36. S. Nosé, Mol. Phys. 52, 255 (1984).

    Article  ADS  Google Scholar 

  37. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  ADS  Google Scholar 

  38. Q. Pu, Y. Leng, L. Tsetseris, H. S. Park, S. T. Pantelides, and P. T. Cummings, J. Chem. Phys. 126, 144707 (2007).

    Article  ADS  Google Scholar 

  39. N. Fujita, S. Kurokawa, and A. Sakai, Phys. Status Solidi B 253, 1149 (2016).

    Article  ADS  Google Scholar 

  40. V. Rosato, M. Guillope, and B. Legrand, Philos. Mag. A 59, 321 (1989).

    Article  ADS  Google Scholar 

  41. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).

    Article  ADS  Google Scholar 

  42. N. A. Levanov, V. S. Stepanyuk, W. Hergert, D. I. Bazhanov, P. H. Dederichs, A. Katsnelson, and C. Massobrio, Phys. Rev. B 61, 2230 (2000).

    Article  ADS  Google Scholar 

  43. S. Dokukin, S. Kolesnikov, A. Saletsky, and A. Klavsyuk, Surf. Sci. 692, 121515 (2020).

    Article  Google Scholar 

  44. S. V. Kolesnikov, A. L. Klavsyuk, and A. M. Saletsky, Phys. Solid State 55, 1950 (2013).

    Article  ADS  Google Scholar 

  45. S. Dokukin, S. Kolesnikov, A. Saletsky, and A. Klavsyuk, J. Alloys Compd. 763, 719 (2018).

    Article  Google Scholar 

  46. V. I. Tomilin, N. P. Tomilina, and V. A. Bakhtina, Physical Materials Science (SFU, Krasnoyarsk, 2012) [in Russian].

    Google Scholar 

  47. R. M. Khusnutdinoff, A. V. Mokshin, B. A. Klumov, R. E. Ryltsev, and N. M. Chtchelkatchev, J. Exp. Theor. Phys. 123, 265 (2016).

    Article  ADS  Google Scholar 

  48. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, Burlington, 2006).

    MATH  Google Scholar 

  49. V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, Lomonosov: Supercomputing at Moscow State University (Boca Raton, U. S., 2013).

    Google Scholar 

  50. V. Voevodin, A. Antonov, D. Nikitenko, P. Shvets, S. Sobolev, I. Sidorov, K. Stefanov, V. Voevodin, and S. Zhumatiy, Supercomput. Front. Innov. 6, 4 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [49, 50].

Funding

The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Dokukin.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokukin, S.A., Kolesnikov, S.V. & Saletsky, A.M. Molecular Dynamics Simulation of Elongation of Copper–Platinum Nanocontacts. J. Exp. Theor. Phys. 131, 745–751 (2020). https://doi.org/10.1134/S1063776120100106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120100106

Navigation