Skip to main content
Log in

The Renormalizable BL Model with D 5 Discrete Symmetry for Lepton Masses and Mixings

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We construct a renormalizable BL standard model (SM) extension with D5 symmetry in which neutrino mass hierarchies and the tiny neutrino masses are generated at leading order by type I seesaw mechanism. The obtained physical parameters are well consistent with the global fit of neutrino oscillation data given in [1]. The model predicts an effective neutrino mass parameter of 〈mee〉 = 3.731 × 10–3 eV for normal hierarchy (NH) and 〈mee〉 = 4.848 × 10–2 eV for inverted hierarchy (IH) which are well consistent with the recent experimental limits on neutrinoless double beta decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. φ and ϕ are respectively put in 21 and 22 under D5 so each of them contains two SU(2)L doublets, η is put in 21 under D5 so it contains two SU(2)L singlets.

  2. The assignments under SU(3)c × U(1)Y symmetry is the same as those in [30].

  3. Two interactions \({{\bar {\psi }}_{{1L}}}\)φlαR and \({{\bar {\psi }}_{{\alpha L}}}\)φl1R are forbidden by D5 symmetry.

  4. Here, we denote V(XX1, YY1, …) ≡ V(X, Y, …)\({{|}_{{\{ X = {{X}_{1}},Y = {{Y}_{1}},...\} }}}\)

REFERENCES

  1. I. Esteban et al., J. High Energy Phys., No. 01, 106 (2019); arXiv: 1811.05487 [hep-ph].

  2. R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980).

    Article  ADS  Google Scholar 

  3. R. E. Marshak and R. N. Mohapatra, Phys. Lett. B 91, 222 (1980).

    Article  ADS  Google Scholar 

  4. C. Wetterich, Nucl. Phys. B 187, 343 (1981).

    Article  ADS  Google Scholar 

  5. A. Masiero, J. F. Nieves, and T. Yanagida, Phys. Lett. B 116, 11 (1982).

    Article  ADS  Google Scholar 

  6. W. Buchmuller, C. Greub, and P. Minkowski, Phys. Lett. B 267, 395 (1991).

    Article  ADS  Google Scholar 

  7. S. Iso, N. Okada, and Y. Orikasa, Phys. Lett. B 676, 81 (2009); arXiv:0902.4050 [hep-ph].

    Article  ADS  Google Scholar 

  8. S. Iso, N. Okada, and Y. Orikasa, Phys. Rev. D 80, 115007 (2009); arXiv:0909.0128 [hep-ph].

    Article  ADS  Google Scholar 

  9. N. Sahu and U. A. Yajnik, Phys. Lett. B 635, 1116 (2006); arXiv: hep-ph/0509285.

    Article  Google Scholar 

  10. W. Emam and S. Khalil, Eur. Phys. J. C 55, 625 (2007); arXiv:0704.1395 [hep-ph].

    Article  ADS  Google Scholar 

  11. T. Basak and T. Mondal, Phys. Rev. D 89, 063527 (2014); arXiv:1308.0023 [hep-ph].

    Article  ADS  Google Scholar 

  12. W. Rodejohann and C. E. Yaguna, J. Cosmol. Astropart. Phys. 1512, 032 (2015); arXiv: 1509.04036 [hep-ph].

  13. J. Guo, Z. Kang, P. Ko, and Y. Orikasa, Phys. Rev. D 91, 115017 (2015); arXiv: 1502.0050[hep-ph].

    Article  ADS  Google Scholar 

  14. A. El-Zant, S. Khalil, and A. Sil, Phys. Rev. D 91, 035030 (2015); arXiv:1308.0836 [hep-ph].

    Article  ADS  Google Scholar 

  15. S. Khalil, J. Phys. G 35, 055001 (2008); arXiv: hep-ph/0611205.

    Article  MathSciNet  Google Scholar 

  16. T. Higaki, R. Kitano, and R. Sato, J. High Energy Phys. 1407, 044 (2014); arXiv:1405.0013 [hep-ph].

  17. F. F. Deppisch, W. Liu, and M. Mitra, J. High Energy Phys. 1808, 181 (2018); arXiv: 1804.04075 [hep-ph].

  18. P. S. B. Dev, R. N. Mohapatra, and Y. Zhang, J. High Energy Phys. 1803, 122 (2018); arXiv: 1711.07634 [hep-ph].

  19. T. Hasegawa, N. Okada, and O. Seto, Phys. Rev. D 99, 095039 (2019); arXiv:1904.03020[hep-ph].

  20. M. Abbas and S. Khalil, J. High Energy Phys. 0804, 056 (2008); arXiv:0707.0841 [hep-ph].

  21. S. Khalil and H. Okada, Phys. Rev. D 79, 083510 (2009); arXiv: 0810.4573 [hep-ph].

    Article  ADS  Google Scholar 

  22. G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701 (2010); arXiv: 1002.0211 [hep-ph].

    Article  ADS  Google Scholar 

  23. S. F. King and C. Luhn, Rep. Prog. Phys. 76, 056201 (2013), arXiv: 1301.1340 [hep-ph].

    Article  ADS  Google Scholar 

  24. S. F. King, A. Merle, S. Morisi, Y. Shimizu, and M. Tanimoto, New J. Phys. 16, 045018 (2014); arXiv: 1402.4271 [hep-ph].

    Article  ADS  Google Scholar 

  25. S. T. Petcov, Eur. Phys. J. C 78, 709 (2018); arXiv:1711.10806 [hep-ph].

  26. V. V. Vien and H. N. Long, J. Korean Phys. Soc. 66, 1809 (2015); arXiv: 1408.4333 [hep-ph].

    Article  ADS  Google Scholar 

  27. V. V. Vien and H. N. Long, Adv. High Energy Phys. 2014, 192536 (2014).

    Article  Google Scholar 

  28. H. Ishimori et al., Prog. Theor. Phys. Suppl. 183, 1 (2010); arXiv:1003.3552 [hep-th].

    Article  ADS  Google Scholar 

  29. C. Hagedorn, M. Lindner, and F. Plentinger, Phys. Rev. D 74, 025007 (2006); arXiv: hep-ph/0604265.

    Article  ADS  Google Scholar 

  30. V. V. Vien and N. V. Soi, Mod. Phys. Lett. A 35, 2050003 (2020).

    Article  ADS  Google Scholar 

  31. V. V. Vien and H. N. Long, Int. J. Mod. Phys. A 28, 1350159 (2013); arXiv: 1312.5034 [hep-ph].

    Article  ADS  Google Scholar 

  32. P. V. Dong, H. N. Long, C. H. Nam, and V. V. Vien, Phys. Rev. D 85, 053001 (2012); arXiv: 1111.6360 [hep-ph].

    Article  ADS  Google Scholar 

  33. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018); 2019 update.

  34. C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).

    Article  ADS  Google Scholar 

  35. D.-d. Wu, Phys. Rev. D 33, 860 (1986).

    Article  ADS  Google Scholar 

  36. O. W. Greenberg, Phys. Rev. D 32, 1841 (1985).

    Article  ADS  Google Scholar 

  37. B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957).

    ADS  Google Scholar 

  38. B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958).

    Google Scholar 

  39. Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

    Article  ADS  Google Scholar 

  40. W. Rodejohann, Phys. Rev. D 69, 033005 (2004); arXiv: hep-ph/0309249.

    Article  ADS  Google Scholar 

  41. W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011); arXiv: 1106.1334 [hep-ph].

    Article  ADS  Google Scholar 

  42. M. Mitra, G. Senjanovic, and F. Vissani, Nucl. Phys. B 856, 26 (2012); arXiv: 1108.0004 [hep-ph]

    Article  ADS  Google Scholar 

  43. S. M. Bilenky and C. Giunti, Mod. Phys. Lett. A 27, 1230015 (2012); arXiv:1203.5250 [hep-ph].

    Article  ADS  Google Scholar 

  44. W. Rodejohann, J. Phys. G 39, 124008 (2012); arXiv: 1206.2560 [hep-ph].

    Article  ADS  Google Scholar 

  45. J. D. Vergados, H. Ejiri, and F. Simkovic, Rep. Prog. Phys. 75, 106301 (2012); arXiv: 1205.0649 [hep-ph].

    Article  ADS  Google Scholar 

  46. S. Roy Choudhury and S. Choubey, J. Cosmol. Astropart. Phys. 1809, 017 (2018); arXiv: 1806.10832 [astro-ph.CO].

  47. KamLAND-Zen Collab., Phys. Rev. Lett. 117, 082503 (2016); arXiv: 1605.02889 [hep-ph].

  48. M. Agostini et al. (GERDA Collab.), Phys. Rev. Lett. 120, 132503 (2018); arXiv: 1803.11100 [nucl-ex].

  49. C. E. Aalseth et al. (Majorana Collab.), Phys. Rev. Lett. 120, 132502 (2018); arXiv: 191710.11608 [nucl-ex].

  50. M. Auger et al. (EXO-200 Collab.), J. Instrum. 7, P05010 (2012).

    Article  Google Scholar 

  51. J. B. Albert et al. (EXO-200 Collab.), Nature (London, U.K.) 510, 229 (2014).

    Article  ADS  Google Scholar 

  52. J. B. Albert et al. (EXO-200 Collab.), Phys. Rev. Lett. 120, 072701 (2018); arXiv: 1707.08707 [hep-ex].

  53. C. Alduino et al. (CUORE Collab.), Phys. Rev. Lett. 120, 132501 (2018); arXiv: 1710.07988 [nucl-ex].

  54. G.-yu. Huang, W. Rodejohann, and Sh. Zhou, Phys. Rev. D 101, 016003 (2020); arXiv: 1910.08332 [hep-ph].

  55. J. Penedo and S. Petcov, Phys. Lett. B 786, 410 (2018); arXiv: 1806.03203 [hep-ph].

Download references

ACKNOWLEDGMENTS

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 103.01-2017.341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vien.

Appendices

APPENDIX A

1.1 The Explicit Expressions of \(\mathbb{K}\), \({{\mathbb{K}}_{{1,2}}}\), \({{\mathbb{N}}_{{1,2}}}\)

$$\begin{gathered} \mathbb{K} = \frac{{{{c}_{D}} - {{d}_{D}}}}{{{{b}_{D}}}},\quad \frac{{{{\mathbb{K}}_{{1,2}}}}}{{{{b}_{D}}}} = \frac{{ - {{\alpha }_{1}} \mp \sqrt {{{\alpha }_{2}}} }}{{2{{\alpha }_{0}}}}, \\ {{\mathbb{N}}_{{1,2}}} = \frac{{ - {{\alpha }_{3}} \mp ({{c}_{D}} - {{d}_{D}})\sqrt {{{\alpha }_{2}}} }}{{2{{\alpha }_{0}}}}, \\ \end{gathered} $$
(A.1)

where

$$\begin{gathered} {{\alpha }_{0}} = a_{D}^{2}b_{R}^{2}({{c}_{D}} - {{d}_{D}}) + {{a}_{R}}\{ b_{D}^{2}[{{b}_{R}}{{c}_{D}} - ({{b}_{R}} + {{c}_{R}}){{d}_{D}}] \\ \, + ({{c}_{D}} - {{d}_{D}})[{{b}_{R}}(c_{D}^{2} + d_{D}^{2}) - {{c}_{D}}{{c}_{R}}{{d}_{D}}]\} , \\ \end{gathered} $$
$$\begin{gathered} {{\alpha }_{1}} = 2a_{D}^{2}b_{R}^{2} + {{a}_{R}}[(b_{D}^{2} + c_{D}^{2})(2{{b}_{R}} + {{c}_{R}}) \\ \, - 2{{c}_{D}}{{c}_{R}}{{d}_{D}} + (2{{b}_{R}} - {{c}_{R}})d_{D}^{2}], \\ \end{gathered} $$
$$\begin{gathered} {{\alpha }_{2}} = 4a_{D}^{4}b_{R}^{4} + 4a_{D}^{2}{{a}_{R}}b_{R}^{2}[b_{D}^{2}(2{{b}_{R}} + cR) - 2{{c}_{D}}{{c}_{R}}{{d}_{D}} \\ \, + 2{{b}_{R}}(c_{D}^{2} + d_{D}^{2})] + a_{R}^{2}(b_{D}^{2} + c_{D}^{2} + d_{D}^{2})[b_{D}^{2}{{(2{{b}_{R}} + {{c}_{R}})}^{2}} \\ \, - 8{{b}_{R}}{{c}_{D}}{{c}_{R}}{{d}_{D}} + 4b_{R}^{2}(c_{D}^{2} + d_{D}^{2}) + c_{R}^{2}(c_{D}^{2} + d_{D}^{2})], \\ \end{gathered} $$
$${{\alpha }_{3}} = {{a}_{R}}{{c}_{R}}[b_{D}^{2} + {{({{c}_{D}} - {{d}_{D}})}^{2}}]({{c}_{D}} + {{d}_{D}}).$$
(A.2)

APPENDIX B

1.1 Higgs Potential

The renormalizable potential invariant under all symmetries SU(3)C \( \otimes \) SU(2)L \( \otimes \) U(1)Y \( \otimes \) U(1)BL \( \otimes \) \(\underline{D}{}_5\) is given by:Footnote 4

$$\begin{gathered} {{V}_{{{\text{total}}}}} = V(H) + V(\varphi ) + V(\phi ) + V(\chi ) + V(\eta ) \\ + \,V(H,\varphi ) + V(H,\phi ) + V(H,\chi ) + V(H,\eta ) \\ + \,V(\varphi ,\phi ) + V(\varphi ,\chi ) + V(\varphi ,\eta ) + V(\phi ,\chi ) \\ \, + V(\phi ,\eta ) + V(\chi ,\eta ), \\ \end{gathered} $$
(B.1)

where

$$V(H) = \mu _{H}^{2}{{H}^{\dag }}H + {{\lambda }^{H}}{{({{H}^{\dag }}H)}^{2}},$$
(B.2)
$$\begin{gathered} V(\varphi ) = \mu _{\varphi }^{2}{{\varphi }^{\dag }}\varphi + \lambda _{1}^{\varphi }{{({{\varphi }^{\dag }}\varphi )}_{\underline{1}{}_1}}{{({{\varphi }^{\dag }}\varphi )}_{\underline{1}{}_1}} \\ + \,\lambda _{2}^{\varphi }{{({{\varphi }^{\dag }}\varphi )}_{\underline{1}{}_2}}{{({{\varphi }^{\dag }}\varphi )}_{\underline{1}{}_2}} + \lambda _{3}^{\varphi }{{({{\varphi }^{\dag }}\varphi )}_{\underline{2}{}_2}}{{({{\varphi }^{\dag }}\varphi )}_{\underline{2}{}_2}}, \\ \end{gathered} $$
(B.3)
$$\begin{gathered} V(\phi ) = \mu _{\phi }^{2}{{\phi }^{\dag }}\phi + \lambda _{1}^{\phi }{{({{\phi }^{\dag }}\phi )}_{\underline{1}{}_1}}{{({{\phi }^{\dag }}\phi )}_{\underline{1}{}_1}} \\ + \,\lambda _{2}^{\phi }{{({{\phi }^{\dag }}\phi )}_{\underline{1}{}_2}}{{({{\phi }^{\dag }}\phi )}_{\underline{1}{}_2}} + \lambda _{3}^{\phi }{{({{\phi }^{\dag }}\phi )}_{\underline{2}{}_1}}{{({{\phi }^{\dag }}\phi )}_{\underline{2}{}_1}}, \\ \end{gathered} $$
(B.4)
$$V(\chi ) = V(H \to \chi ),\quad V(\eta ) = V(\varphi \to \eta ),$$
(B.5)
$$\begin{gathered} V(H,\varphi ) \\ = \,\lambda _{1}^{{H\varphi }}{{({{H}^{\dag }}H)}_{\underline{1}{}_1}}{{({{\varphi }^{\dag }}\varphi )}_{\underline{1}{}_1}}\, + \,\lambda _{2}^{{H\varphi }}{{({{H}^{\dag }}\varphi )}_{\underline{2}{}_1}}{{({{\varphi }^{\dag }}H)}_{\underline{2}{}_1}}, \\ \end{gathered} $$
(B.6)
$$\begin{gathered} V(H,\phi ) \\ = \lambda _{1}^{{H\phi }}{{({{H}^{\dag }}H)}_{\underline{1}{}_1}}{{({{\phi }^{\dag }}\phi )}_{\underline{1}{}_1}} + \lambda _{2}^{{H\phi }}{{({{H}^{\dag }}\phi )}_{\underline{2}{}_2}}{{({{\phi }^{\dag }}H)}_{\underline{2}{}_2}}, \\ \end{gathered} $$
(B.7)
$$\begin{gathered} V(H,\chi ) \\ = \lambda _{1}^{{H\chi }}{{({{H}^{\dag }}H)}_{\underline{1}{}_1}}{{({{\chi }^{\dag }}\chi )}_{\underline{1}{}_1}} + \lambda _{2}^{{H\chi }}{{({{H}^{\dag }}\chi )}_{\underline{1}{}_1}}{{({{\chi }^{\dag }}H)}_{\underline{1}{}_1}}, \\ \end{gathered} $$
(B.8)
$$V(H,\eta ) = V(H,\varphi \to \eta ),$$
(B.9)
$$\begin{gathered} V(\varphi ,\phi ) = \lambda _{1}^{{\varphi \phi }}{{({{\varphi }^{\dag }}\varphi )}_{\underline{1}{}_1}}{{({{\phi }^{\dag }}\phi )}_{\underline{1}{}_1}} + \lambda _{2}^{{\varphi \phi }}{{({{\varphi }^{\dag }}\varphi )}_{\underline{1}{}_2}}{{({{\phi }^{\dag }}\phi )}_{\underline{1}{}_2}} \\ \, + \lambda _{3}^{{\varphi \phi }}{{({{\varphi }^{\dag }}\phi )}_{\underline{2}{}_1}}{{({{\phi }^{\dag }}\varphi )}_{\underline{2}{}_1}} + \lambda _{4}^{{\varphi \phi }}{{({{\varphi }^{\dag }}\phi )}_{\underline{2}{}_2}}{{({{\phi }^{\dag }}\varphi )}_{\underline{2}{}_2}}, \\ \end{gathered} $$
(B.10)
$$V(\varphi ,\chi ) = \lambda _{1}^{{\varphi \chi }}{{({{\varphi }^{\dag }}\varphi )}_{\underline{1}{}_1}}{{({{\chi }^{\dag }}\chi )}_{\underline{1}{}_1}} + \lambda _{2}^{{\varphi \chi }}{{({{\varphi }^{\dag }}\chi )}_{\underline{2}{}_1}}{{({{\chi }^{\dag }}\varphi )}_{\underline{2}{}_1}},$$
(B.11)
$$\begin{gathered} V(\varphi ,\eta ) = \lambda _{1}^{{\varphi \eta }}{{({{\varphi }^{\dag }}\varphi )}_{\underline{1}{}_1}}{{({{\eta }^{\dag }}\eta )}_{\underline{1}{}_1}} + \lambda _{2}^{{\varphi \eta }}{{({{\varphi }^{\dag }}\varphi )}_{\underline{1}{}_2}}{{({{\eta }^{\dag }}\eta )}_{\underline{1}{}_2}} \\ \, + \lambda _{3}^{{\varphi \eta }}{{({{\varphi }^{\dag }}\varphi )}_{\underline{2}{}_2}}{{({{\eta }^{\dag }}\eta )}_{\underline{2}{}_2}} + \lambda _{4}^{{\varphi \eta }}{{({{\varphi }^{\dag }}\eta )}_{\underline{1}{}_1}}{{({{\eta }^{\dag }}\varphi )}_{\underline{1}{}_1}} \\ \, + \lambda _{5}^{{\varphi \eta }}{{({{\varphi }^{\dag }}\eta )}_{\underline{1}{}_2}}{{({{\eta }^{\dag }}\varphi )}_{\underline{1}{}_2}} + \lambda _{6}^{{\varphi \eta }}{{({{\varphi }^{\dag }}\eta )}_{\underline{2}{}_2}}{{({{\eta }^{\dag }}\varphi )}_{\underline{2}{}_2}}, \\ \end{gathered} $$
(B.12)
$$V(\phi ,\chi ) = \lambda _{1}^{{\phi \chi }}{{({{\phi }^{\dag }}\phi )}_{\underline{1}{}_1}}{{({{\chi }^{\dag }}\chi )}_{\underline{1}{}_1}} + \lambda _{2}^{{\phi \chi }}{{({{\phi }^{\dag }}\chi )}_{\underline{2}{}_2}}{{({{\chi }^{\dag }}\phi )}_{\underline{2}{}_2}},$$
(B.13)
$$\begin{gathered} V(\phi ,\eta ) = \lambda _{1}^{{\phi \eta }}{{({{\phi }^{\dag }}\phi )}_{\underline{1}{}_1}}{{({{\eta }^{\dag }}\eta )}_{\underline{1}{}_1}} + \lambda _{2}^{{\phi \eta }}{{({{\phi }^{\dag }}\phi )}_{\underline{1}{}_2}}{{({{\eta }^{\dag }}\eta )}_{\underline{1}{}_2}} \\ \, + \lambda _{3}^{{\phi \eta }}{{({{\phi }^{\dag }}\eta )}_{\underline{2}{}_1}}{{({{\eta }^{\dag }}\phi )}_{\underline{2}{}_1}} + \lambda _{4}^{{\phi \eta }}{{({{\phi }^{\dag }}\eta )}_{\underline{2}{}_2}}{{({{\eta }^{\dag }}\phi )}_{\underline{2}{}_2}}, \\ V(\chi ,\eta ) = V(H \to \chi ,\varphi \to \eta ). \\ \end{gathered} $$
(B.14)

The scalars fields H, φ, ϕ, χ, and η with their VEVs aligned in Eq. (3) is a solution from the minimization condition of Vtotal. To see this, in the system of minimization equations, let us put \({{{v}}_{{{{\phi }_{1}}}}}\) = \({{{v}}_{{{{\phi }_{2}}}}}\) = \({{{v}}_{\phi }}\), \({{{v}}_{{{{\eta }_{1}}}}}\) = 0, \({{{v}}_{{{{\eta }_{1}}}}}\) = \({{{v}}_{\eta }}\) and \({v}{\text{*}}\) = \({v}\), \({v}_{\phi }^{*}\) = \({{{v}}_{\phi }}\), \({v}_{\chi }^{*}\) = \({{{v}}_{\chi }}\), \({v}_{\eta }^{*}\) = \({{{v}}_{\eta }}\), which reduces to

$$\begin{gathered} \mu _{H}^{2} + (\lambda _{1}^{{H\varphi }} + \lambda _{2}^{{H\varphi }})({v}_{1}^{*}{{{v}}_{2}}\, + \,{v}_{2}^{*}{{{v}}_{1}})\, + \,(\lambda _{1}^{{H\chi }} + \lambda _{2}^{{H\chi }}){v}_{\chi }^{2} \\ \, + 2[(\lambda _{1}^{{H\eta }}\, + \,\lambda _{2}^{{H\eta }}){v}_{\eta }^{2} + {{\lambda }^{H}}{{{v}}^{2}}\, + \,(\lambda _{1}^{{H\phi }} + \lambda _{2}^{{H\phi }}){v}_{\phi }^{2}] = 0, \\ \end{gathered} $$
(B.15)
$$\begin{gathered} \mu _{\varphi }^{2}{v}_{2}^{*} + 2\lambda _{3}^{\varphi }{v}_{1}^{*}{v}_{2}^{{}}{v}_{2}^{*} + 2\lambda _{2}^{\varphi }{v}_{2}^{*}({v}_{1}^{{}}{v}_{2}^{*} - {v}_{1}^{*}{v}_{2}^{{}}) \\ \, + 2\lambda _{1}^{\varphi }{v}_{2}^{*}({v}_{1}^{{}}{v}_{2}^{*} + {v}_{1}^{*}{v}_{2}^{{}}) + [(\lambda _{3}^{{\varphi \eta }} + \lambda _{4}^{{\varphi \eta }} - \lambda _{5}^{{\varphi \eta }}){v}_{1}^{*} \\ \, + (2\lambda _{1}^{{\varphi \eta }} + \lambda _{4}^{{\varphi \eta }} + \lambda _{5}^{{\varphi \eta }} + \lambda _{6}^{{\varphi \eta }}){v}_{2}^{*}]{v}_{\eta }^{2} \\ \, + (\lambda _{1}^{\varphi } + \lambda _{2}^{\varphi }){v}_{2}^{*}{v}_{\chi }^{2} + (\lambda _{1}^{{H\eta }} + \lambda _{2}^{{H\eta }}){v}_{2}^{*}{{{v}}^{2}} \\ \, + [\lambda _{3}^{{\varphi \phi }}{v}_{1}^{*} + (2\lambda _{1}^{{\varphi \phi }} + \lambda _{4}^{{\varphi \phi }}){v}_{2}^{*}]{v}_{\phi }^{2} = 0, \\ \end{gathered} $$
(B.16)
$$\begin{gathered} \mu _{\varphi }^{2}{v}_{1}^{*} + 2\lambda _{3}^{\varphi }{v}_{1}^{{}}{v}_{1}^{*}{v}_{2}^{*} + 2\lambda _{2}^{\varphi }{v}_{1}^{*}({v}_{1}^{*}{{{v}}_{2}} - {{{v}}_{1}}{v}_{2}^{*}) \\ \, + 2\lambda _{1}^{\varphi }{v}_{1}^{*}({v}_{1}^{*}{{{v}}_{2}} + {{{v}}_{1}}{v}_{2}^{*}) + [(\lambda _{3}^{{\varphi \eta }} + \lambda _{4}^{{\varphi \eta }} - \lambda _{5}^{{\varphi \eta }}){v}_{2}^{*} \\ \, + (2\lambda _{1}^{{\varphi \eta }} + \lambda _{4}^{{\varphi \eta }} + \lambda _{5}^{{\varphi \eta }} + \lambda _{6}^{{\varphi \eta }}){v}_{1}^{*}]{v}_{\eta }^{2} \\ \, + (\lambda _{1}^{\varphi } + \lambda _{2}^{\varphi }){v}_{1}^{*}{v}_{\chi }^{2} + (\lambda _{1}^{{H\eta }} + \lambda _{2}^{{H\eta }}){v}_{1}^{*}{{{v}}^{2}} \\ \, + [\lambda _{3}^{{\varphi \phi }}{v}_{2}^{*} + (2_{1}^{{\varphi \phi }} + \lambda _{4}^{{\varphi \phi }}){v}_{1}^{*}]{v}_{\phi }^{2} = 0, \\ \end{gathered} $$
(B.17)
$$\begin{gathered} 2[(\lambda _{1}^{{\phi \chi }} + \lambda _{2}^{{\phi \chi }}){v}_{\chi }^{2} + (2\lambda _{1}^{{\phi \eta }} + \lambda _{3}^{{\phi \eta }} + \lambda _{4}^{{\phi \eta }}){v}_{\eta }^{2} \\ \, + (\lambda _{1}^{{H\phi }} + \lambda _{2}^{{H\phi }}){{{v}}^{2}} + (4\lambda _{1}^{\phi } + 2\lambda _{3}^{\phi }){v}_{\phi }^{2}] + 2\mu _{\phi }^{2} \\ + \,(2\lambda _{1}^{\varphi }\, + \,\lambda _{4}^{\varphi })({v}_{1}^{*}{{{v}}_{2}}\, + \,{v}_{2}^{*}{{{v}}_{1}})\, + \,\lambda _{3}^{\varphi }({\text{|}}{{{v}}_{1}}{{{\text{|}}}^{2}}\, + \,{\text{|}}{{{v}}_{2}}{{{\text{|}}}^{2}})\, = \,0, \\ \end{gathered} $$
(B.18)
$$\begin{gathered} \mu _{\chi }^{2} + (\lambda _{1}^{{\varphi \chi }} + \lambda _{2}^{{\varphi \chi }})({v}_{1}^{*}{{{v}}_{2}} + {v}_{2}^{*}{{{v}}_{1}}) \\ \, + 2{{\lambda }^{\chi }}{v}_{\chi }^{2} + 2(\lambda _{1}^{{\chi \eta }} + \lambda _{2}^{{\chi \eta }}){v}_{\eta }^{2} \\ \, + (\lambda _{1}^{{H\chi }} + \lambda _{2}^{{H\chi }}){{{v}}^{2}} + 2(\lambda _{1}^{{\phi \chi }} + \lambda _{2}^{{\phi \chi }}){v}_{\phi }^{2} = 0, \\ \end{gathered} $$
(B.19)
$$\begin{gathered} 2\mu _{\eta }^{2} + (\lambda _{3}^{{\varphi \eta }} + \lambda _{4}^{{\varphi \eta }} - \lambda _{5}^{{\varphi \eta }}){\text{|}}{{{v}}_{1}}{{{\text{|}}}^{2}} \\ \, + (2\lambda _{1}^{{\varphi \eta }} + \lambda _{4}^{{\varphi \eta }} + \lambda _{5}^{{\varphi \eta }} + \lambda _{6}^{{\varphi \eta }}){v}_{1}^{*}{{{v}}_{2}} \\ \, + 2[(\lambda _{1}^{{\chi \eta }} + \lambda _{2}^{{\chi \eta }}){v}_{\chi }^{2} + 2(2\lambda _{1}^{\eta } + \lambda _{3}^{\eta }){v}_{\eta }^{2} \\ \, + (\lambda _{1}^{{H\eta }} + \lambda _{2}^{{H\eta }}){{{v}}^{2}} + (2\lambda _{1}^{{\phi \eta }} + \lambda _{3}^{{\phi \eta }} + \lambda _{4}^{{\phi \eta }}){v}_{\phi }^{2}] \\ \, + (2\lambda _{1}^{{\varphi \eta }} + \lambda _{4}^{{\varphi \eta }} + \lambda _{5}^{{\varphi \eta }} + \lambda _{6}^{{\varphi \eta }}){v}_{2}^{*}{{{v}}_{1}} \\ \, + (\lambda _{3}^{{\varphi \eta }} + \lambda _{4}^{{\varphi \eta }} - \lambda _{5}^{{\varphi \eta }}{\text{)|}}{{{v}}_{2}}{{{\text{|}}}^{2}} = 0. \\ \end{gathered} $$
(B.20)

Because the number of equations for the potential minimization (B.15)–(B.20) are less than the number of Higgs potential parameters, so this system of equation always give the solution (\({v}\), \({{{v}}_{1}}\), \({{{v}}_{2}}\), \({{{v}}_{\phi }}\), \({{{v}}_{\chi }}\), \({{{v}}_{\eta }}\)) as chosen in Eq. (3). It is noted that the alignments in Eq. (3) is only one solution to have the desirable results. There are some other solutions but that the physics results are different. For instance, the solution with the alignment 〈η〉 = (〈η1〉, 〈η2〉) (and the aligments of the other scalars are given in Eq. (3)) provides an additional contribution to the element (22) of the matrix \({{\mathbb{M}}_{R}}\) in Eq. (15) and model thus contains one more parameter; the solution with the alignment 〈η1〉 = 〈η2〉 ≠ 0 provides the analytical expressions for the neutrino masses in simpler form, however, it cannot accommodate the neutrino mixing data in Eq. (1), etc. Therefore, the solution in Eq. (3) is preferred for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vien, V.V. The Renormalizable BL Model with D 5 Discrete Symmetry for Lepton Masses and Mixings. J. Exp. Theor. Phys. 131, 730–740 (2020). https://doi.org/10.1134/S106377612010009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612010009X

Navigation