Skip to main content
Log in

Time Delay of Slow Electrons by a Diatomic Molecule Described by Non-Overlapping Atomic Potentials Model

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Wigner time delay in the processes of elastic scattering of slow electrons by two-atomic molecule has been studied within the frame of non-overlapping atomic potentials model. The molecular continuum wave function is represented as a combination of a plane wave and two spherical s-waves, generated by the centers of atomic spheres. The asymptotic of this function determines in closed form the amplitude of elastic electron scattering. It has been shown that at asymptotically great distances from the molecule the continuum wave functions can be presented as an expansion in a set of other than spherical, orthonormal functions. The coefficients of the scattering amplitude expansion in a series of these functions determine the scattering phases for the molecular system under consideration. With these molecular phase shifts the Wigner time delay for slow electron scattered by two-atomic target has been calculated. As a concrete example of a molecule we consider C2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. We have demonstrated quite a while ago [13] that the introduction of a molecular sphere into the muffin-tin-potential model leads to some non-physical features in the molecular continuum wave functions.

  2. Atomic units are used throughout this paper.

  3. Note, that in [18] a similar function was used to describe scattering of slow mesons by deuteron.

REFERENCES

  1. L. E. Eisenbud, Ph. D. Thesis (Princeton Univ., Princeton, 1948).

  2. E. P. Wigner, Phys. Rev. 98, 145 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  3. F. T. Smith, Phys. Rev. 118, 349 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  4. P. M. Kraus, A. Rupenyan, and H. J. Wörner, Phys. Rev. Lett. 109, 233903 (2012).

    Article  ADS  Google Scholar 

  5. A. Chacon, M. Lein, and C. Ruiz, Phys. Rev. A 89, 053427 (2014).

    Article  ADS  Google Scholar 

  6. P. M. Kraus, D. Baykusheva, and H. J. Wörner, Phys. Rev. Lett. 113, 023001 (2014).

    Article  ADS  Google Scholar 

  7. P. Hockett, E. Frumker, D. M. Villeneuve, and P. B. Corkum, J. Phys. B 49, 095602 (2016).

    Article  ADS  Google Scholar 

  8. M. Huppert, I. Jordan, D. Baykusheva, A. von Conta, and H. J. Wörner, Phys. Rev. Lett. 117, 093001 (2016).

    Article  ADS  Google Scholar 

  9. D. Baykusheva and H. J. Wörner, J. Chem. Phys. 146, 1 (2017).

    Article  Google Scholar 

  10. F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).

    Article  ADS  Google Scholar 

  11. A. P. P. Natalense and R. R. Lucchese, J. Chem. Phys. 111, 5344 (1999).

    Article  ADS  Google Scholar 

  12. F. A. Gianturco and A. Jain, Phys. Rep. 143, 347 (1986).

    Article  ADS  Google Scholar 

  13. M. Ya. Amusia and A. S. Baltenkov, Centr. Eur. J. Phys. 8, 825 (2010).

    Article  ADS  Google Scholar 

  14. H. D. Cohen and U. Fano, Phys. Rev. 150, 31 (1966).

    Article  ADS  Google Scholar 

  15. A. S. Baltenkov, S. T. Manson, and A. Z. Msezane, J. Phys. B 51, 205101 (2018).

    Article  ADS  Google Scholar 

  16. Yu. N. Demkov and V. S. Rudakov, Sov. Phys. JETP 32, 1103 (1971).

    ADS  Google Scholar 

  17. A. S. Baltenkov and A. Z. Msezane, Eur. Phys. J. D 71, 305 (2017).

    Article  ADS  Google Scholar 

  18. K. A. Brueckner, Phys. Rev. 89, 834 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics, Non-Relativistic Theory (Pergamon, Oxford, 1965; Nauka, Moscow, 1989).

  20. V. V. Serov, V. L. Derbov, and T. A. Sergeeva, Phys. Rev. A 87, 063414 (2013).

    Article  ADS  Google Scholar 

  21. D. Dill and J. L. Dehmer, J. Chem. Phys. 61, 692 (1974).

    Article  ADS  Google Scholar 

  22. A. S. Baltenkov, S. T. Manson, and A. Z. Msezane, J. Phys. B 45, 035202 (2012).

    Article  ADS  Google Scholar 

  23. M. Ya. Amusia and A. S. Baltenkov, arXiv: 2001.03652 (2020).

Download references

ACKNOWLEDGMENTS

A.S. Baltenkov thanks for support the Uzbek Fund, grant OT-F2-46, and Dr. I. Woiciechowski for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ya. Amusia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amusia, M.Y., Baltenkov, A.S. Time Delay of Slow Electrons by a Diatomic Molecule Described by Non-Overlapping Atomic Potentials Model. J. Exp. Theor. Phys. 131, 707–713 (2020). https://doi.org/10.1134/S1063776120100015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120100015

Navigation