Skip to main content
Log in

Temperature Dependence of the Electrical Resistivity of Electron-Doped Cuprates

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Experimental data on the temperature dependence of electrical resistivity are analyzed for electron-doped Nd2 –xCexCuO4 –δ cuprates in a wide range of cerium concentrations 0.12 ≤ x ≤ 0.20. It is shown that, in a wide temperature range above the superconducting transition temperature, the electrical resistivity mainly exhibits quadratic temperature dependence and decreases sharply at concentrations of x ≥ 0.17. Theoretical analysis based on the microscopic tJ model for strongly correlated electrons shows that the quadratic temperature dependence of electrical resistivity is attributed to electron scattering by spin excitations. To describe these excitations, a model of antiferromagnetic (AFM) spin fluctuations in the paramagnetic phase is proposed; the intensity of these fluctuations depends on the AFM correlation length. The quadratic temperature dependence of electrical resistivity agrees well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

    ADS  Google Scholar 

  2. N. Plakida, High-Temperature Cuprate Superconductors. Experiment, Theory, and Applications (Springer, Heidelberg, 2010).

    Book  Google Scholar 

  3. N. P. Armitage, P. Fournier, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010).

    Article  ADS  Google Scholar 

  4. T. Tohyama, Phys. Rev. B 70, 174517 (2004).

    Article  ADS  Google Scholar 

  5. N. M. Plakida and V. S. Oudovenko, Phys. Rev. B 59, 11949 (1999).

    Article  ADS  Google Scholar 

  6. N. M. Plakida, Phys. C (Amsterdam, Neth.) 531, 39 (2016).

  7. Y. Ando, S. Komiya, K. Segawa, S. Ono, and Y. Kurita, Phys. Rev. Lett. 93, 267001 (2004).

    Article  ADS  Google Scholar 

  8. N. A. Babushkina, L. M. Belova, A. P. Zhernov, V. I. Trubitsyn, A. A. Ivanov, and O. A. Churkin, J. Low Temp. Phys. 22, 959 (1996).

    Google Scholar 

  9. A. A. Vladimirov, D. Ihle, and N. M. Plakida, Phys. Rev. B 85, 224536 (2012).

    Article  ADS  Google Scholar 

  10. A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov, and A. P. Menushenkov, Phys. C (Amsterdam, Neth.) 180, 69 (1991).

  11. N. Tralshawala, J. F. Zasadzinski, L. Coffey, and Quang Huang, Phys. Rev. B 44, 12102 (1991).

    Article  ADS  Google Scholar 

  12. A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, M. R. Popov, and A. A. Ivanov, J. Low Temp. Phys. 45, 217 (2019).

    Article  Google Scholar 

  13. S. C. Tsuei, A. Gupta, and G. Koren, Phys. C (Amsterdam, Neth.) 161, 415 (1989);

  14. S. C. Tsuei, Phys. A (Amsterdam, Neth.) 168, 238 (1990).

  15. M. A. Crusellas, J. Fontcuberta, S. Piñol, T. Grenet, and J. Beille, Phys. C (Amsterdam, Neth.) 180, 313 (1991).

  16. Y. Dagan, M. M. Qazilbash, C. P. Hill, V. N. Kulkarni, and R. L. Greene, Phys. Rev. Lett. 92, 167001 (2004).

    Article  ADS  Google Scholar 

  17. Y. Dagan and R. L. Greene, Phys. Rev. B 76, 024506 (2007).

    Article  ADS  Google Scholar 

  18. K. Jin, N. P. Butch, K. Kirshenbaum, J. Paglione, and R. L. Greene, Nature (London, U.K.) 476, 73 (2011).

    Article  Google Scholar 

  19. F. F. Tafti, F. Laliberte, M. Dion, J. Gaudet, P. Fournier, and L. Taillefer, Phys. Rev. B 90, 024519 (2014).

    Article  ADS  Google Scholar 

  20. E. P. Wohlfarth, in Ferromagnetic Materials, Ed. by E. P. Wohlfarth (North-Holland, Amsterdam, 1980), Vol. 1, p. 121.

    Google Scholar 

  21. I. Tomeno, M. Yoshida, K. Ikeda, K. Tai, K. Takamuku, N. Koshizuka, and S. Tanaka, Phys. Rev. B 43, 3009 (1991).

    Article  ADS  Google Scholar 

  22. S. Sugai, T. Ido, H. Takagi, S. Uchida, M. Sato, and S. Shamoto, Solid State Commun. 16, 365 (1990).

    Article  ADS  Google Scholar 

  23. M. Matsuda, Y. Endoch, K. Yamada, H. Kojima, R. J. Birgeneau, M. A. Kastner, and G. Shirane, Phys. Rev. B 45, 12548 (1992).

    Article  ADS  Google Scholar 

  24. G. M. Luke, L. P. Le, B. J. Sternlieb, Y. J. Uemura, J. H. Brewer, R. Kadono, R. F. Kiefl, S. R. Kreitzman, T. M. Riseman, C. E. Stronach, M. R. Davis, S. Uchida, H. Takagi, Y. Tokura, Y. Hidaka, et al., Phys. Rev. B 42, 7981 (1990).

    Article  ADS  Google Scholar 

  25. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, G. Liang, and M. Croft, Nature (London, U.K.) 337, 720 (1989).

    Article  ADS  Google Scholar 

  26. P. K. Mang, O. P. Vajk, A. Arvanitaki, J. W. Lynn, and M. Greven, Phys. Rev. Lett. 93, 027002 (2004).

    Article  ADS  Google Scholar 

  27. T. Takahashi, S. Maeda, H. Katayama-Yoshida, Y. Okade, T. Suzuki, A. Fujimori, S. Hosoya, S. Shamoto, and M. Sato, Phys. Rev. B 37, 9788 (1988).

    Article  ADS  Google Scholar 

  28. R. J. Birganeau, D. R. Gable, H. P. Jensen, M. A. Kastner, P. G. Picone, T. R. Thurston, G. Shirane, Y. Endoh, M. Sato, K. Yamatto, Y. Hidaka, M. Oda, Y. Enomoto, M. Suzuki, and T. Murakami, Phys. Rev. B 38, 6614 (1988).

    Article  ADS  Google Scholar 

  29. T. R. Thurston, M. Matsuda, K. Kakurai, K. Yamada, Y. Endoh, R. J. Birgeneau, P. M. Gehring, Y. Hidaka, M. A. Kastner, T. Murakami, and G. Shirane, Phys. Rev. Lett. 65, 263 (1990).

    Article  ADS  Google Scholar 

  30. T. Uefuji, K. Kurahashi, M. Fujita, M. Matsuda, and K. Yamada, Phys. C (Amsterdam, Neth.) 378381, 273 (2002).

  31. E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk, P. K. Mang, and M. Greven, Nature (London, U.K.) 445, 186 (2007).

    Article  ADS  Google Scholar 

  32. N. P. Armitage, F. Ronning, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, D. L. Feng, H. Eisaki, and Z.-X. Shen, Phys. Rev. Lett. 88, 257001 (2002).

    Article  ADS  Google Scholar 

  33. H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, and K. Yamada, Phys. Rev. B 75, 224514 (2007).

    Article  ADS  Google Scholar 

  34. M. Ikeda, T. Yoshida, A. Fujimori, M. Kubota, K. Ono, Hena Das, T. Saha-Dasgupta, K. Unozawa, Y. Kaga, T. Sasagawa, and H. Takagi, Phys. Rev. B 80, 014510 (2009).

    Article  ADS  Google Scholar 

  35. A. F. Santander–Syro, M. Ikeda, T. Yoshida, A. Fujimori, K. Ishizaka, M. Okawa, S. Shin, R. L. Greene, and N. Bontemps, Phys. Rev. Lett. 106, 197002 (2011), Phys. Rev. Lett. 107, 079901(E) (2011).

    Article  ADS  Google Scholar 

  36. S. R. Park, Y. S. Roh, Y. K. Yoon, C. S. Leem, J. H. Kim, B. J. Kim, H. Koh, H. Eisaki, N. P. Armitage, and C. Kim, Phys. Rev. B 75, 060501(R) (2007).

  37. J. He, C. R. Rotundu, M. S. Scheurer, Yu He, M. Hashimoto, Ke-Jun Xu, Yao Wang, E. W. Huang, Tao Jia, Sudi Chen, B. Moritz, Donghui Lu, Y. S. Lee, T. P. Devereaux, and Zh.-X. Shen, Proc. Natl. Acad. Sci. U. S. A. 116, 3449 (2019).

    Article  Google Scholar 

  38. W. Yu, J. S. Higgins, P. Bach, and R. L. Greene, Phys. Rev. B 76, 020503(R) (2007).

  39. T. Healm, M. V. Kartsovnik, M. Bartkowiak, N. Bittner, M. Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. Lett. 103, 157002 (2009).

    Article  ADS  Google Scholar 

  40. T. Helm, M. V. Kartsovnik, C. Proust, B. Vignolle, C. Putzke, E. Kampert, I. Sheikin, E.-S. Choi, J. S. Brooks, N. Bittner, W. Biberacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. B 92, 094501 (2015).

    Article  ADS  Google Scholar 

  41. T. Moriya, Y. Takahashi, and K. Ueda, J. Phys. Soc. Jpn. 59, 2905 (1990).

    Article  ADS  Google Scholar 

  42. D. Ihle and N. M. Plakida, Phys. C (Amsterdam, Neth.) 185189, 1637 (1991).

  43. D. Ihle and N. M. Plakida, Z. Phys. B 96, 159 (1994).

    Article  ADS  Google Scholar 

  44. A. A. Vladimirov, D. Ihle, and N. M. Plakida, Phys. Rev. B 80, 104425 (2009).

    Article  ADS  Google Scholar 

  45. A. A. Vladimirov, D. Ihle, and N. M. Plakida, Phys. Rev. B 83, 024411 (2011).

    Article  ADS  Google Scholar 

  46. D. N. Zubarev, Sov. Phys. Usp. 3, 320 (1960).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 19-02-00421, 19-02-00509, and 20-02-00015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Babushkina.

Additional information

Translated by I. Nikitin

Spectrum of Electronic Excitations

Spectrum of Electronic Excitations

The spectrum of electronic excitations is determined by the one-electron Green’s function for the operators (3). Using the method of equations of motion for the two-time retarded Green’s function [5], we obtain the following equation for the Fourier component of the Green’s function:

$$\begin{gathered} \tilde {G}({\mathbf{k}},\omega ) = {{\langle \langle {{{\tilde {c}}}_{{{\mathbf{k}},\sigma }}}{\text{|}}\tilde {c}_{{{\mathbf{k}},\sigma }}^{\dag }\rangle \rangle }_{\omega }} \\ = \frac{Q}{{\omega - \varepsilon ({\mathbf{k}}) - \Sigma ({\mathbf{k}},\omega )}} \equiv QG({\mathbf{k}},\omega ), \\ \end{gathered} $$
(A.1)

where Q = n/2 = (1 + x)/2 defines the weight of the doubly filled electron band, ε(k) is the electron spectrum (7), and Σ(k, ω) is the mass operator. For the mass operator in the approximation of noncrossing diagrams, we obtain the following equation [5]:

$$\Sigma ({\mathbf{k}},\omega ) = \frac{1}{N}\sum\limits_{\mathbf{q}}^{} {\int\limits_{ - \infty }^\infty {dzK(\omega ,z{\text{|}}{\mathbf{q}},{\mathbf{k}} - {\mathbf{q}})A({\mathbf{q}},z),} } $$
(A.2)

where

$$A({\mathbf{q}},z) = - \frac{1}{\pi }{\text{Im}}G({\mathbf{q}},z)$$
(A.3)

is the spectral density of electronic excitations. The kernel of the integral equation (A.2) has the form

$$\begin{gathered} K(\omega ,z{\text{|}}{\mathbf{q}},{\mathbf{k}} - {\mathbf{q}}) = {\text{|}}t({\mathbf{q}}){{{\text{|}}}^{2}}\frac{1}{\pi }\int\limits_{ - \infty }^\infty {\frac{{d\Omega }}{{\omega - z - \Omega }}} \\ \times \frac{1}{2}\left( {\tanh \frac{z}{{2T}} + \coth \frac{\Omega }{{2T}}} \right)\chi {\kern 1pt} ''({\mathbf{k}} - {\mathbf{q}},\Omega ), \\ \end{gathered} $$
(A.4)

where model (9) is used for the spectral density of spin excitations:

$$\chi {\kern 1pt} ''({\mathbf{k}} - {\mathbf{q}},\Omega ) = {{\chi }_{s}}({\mathbf{k}} - {\mathbf{q}})\chi _{s}^{{''}}(\Omega ).$$

Taking into account that the energy of spin excitations in (A.4) is determined by the frequency Ω ≈ ωs, which is much lower than the characteristic energy of electronic excitations z ~ 4t, we can neglect the effects of retardation and set Ω = 0 in the denominator of (A.4). In this case, the integral of the odd function \(\chi _{s}^{{''}}\)(Ω) with respect to frequency Ω does not contribute to the term tanh(z/2T), and for the mass operator we obtain the equation

$$\begin{gathered} \Sigma ({\mathbf{k}},\omega ) = \frac{1}{N}\sum\limits_{\mathbf{q}}^{} {{\text{|}}t({\mathbf{q}}){{{\text{|}}}^{2}}{{\chi }_{s}}({\mathbf{k}} - {\mathbf{q}})\frac{1}{{2\pi }}} \\ \times \,\mathop {\iint\limits_{ - \infty } {\frac{{dzd\Omega }}{{\omega - z}}A({\mathbf{q}},z)\coth \frac{\Omega }{{2T}}\chi _{s}^{{''}}(\Omega )}}\limits^\infty \\ = \frac{1}{N}\sum\limits_{\mathbf{q}}^{} {{\text{|}}t({\mathbf{q}}){{{\text{|}}}^{2}}{{\chi }_{s}}({\mathbf{k}} - {\mathbf{q}})I(T)\int\limits_{ - \infty }^\infty {\frac{{dz}}{{\omega - z}}A({\mathbf{q}},z).} } \\ \end{gathered} $$
(A.5)

Introducing the real Σ′(k, ω) and imaginary Σ′′(k, ω) parts of the mass operator

$$\Sigma ({\mathbf{k}},\omega + i\epsilon ) = \Sigma {\kern 1pt} '({\mathbf{k}},\omega ) - i\Sigma {\kern 1pt} ''({\mathbf{k}},\omega ),$$

we obtain the following expression for the spectral density of electronic excitations (A.3):

$$A({\mathbf{q}},\omega ) = \frac{{\Sigma {\kern 1pt} ''({\mathbf{q}},\omega ){\text{/}}\pi }}{{{{{[\omega - \varepsilon ({\mathbf{q}}) - \Sigma {\kern 1pt} '({\mathbf{q}},\omega )]}}^{2}} + {{{[\Sigma {\kern 1pt} ''({\mathbf{q}},\omega )]}}^{2}}}}.$$
(A.6)

Setting A(q, z) = δ[z – ε(q)], in the first approximation we obtain the following expression for the mass operator (A.5):

$$\begin{gathered} \Sigma ({\mathbf{k}},\omega ) = \frac{1}{N}\sum\limits_{\mathbf{q}}^{} {{\text{|}}t({\mathbf{q}}){{{\text{|}}}^{2}}{{\chi }_{s}}({\mathbf{k}} - {\mathbf{q}})I(T)\frac{1}{{\omega - \varepsilon ({\mathbf{q}})}}} \\ = \frac{{3(1 - x)}}{{4I(\kappa )}}\frac{1}{N}\sum\limits_{\mathbf{q}}^{} {{\text{|}}t({\mathbf{q}}){{{\text{|}}}^{2}}\frac{1}{{{{\kappa }^{2}} + {{{({\mathbf{Q}} - {\mathbf{q}})}}^{2}}}}\frac{1}{{\omega - \varepsilon ({\mathbf{q}})}}} , \\ \end{gathered} $$
(A.7)

where we used formulas (10) and (16).

The spectral density of electronic excitations (A.6) is demonstrated in Fig. 4 for the symmetric directions Γ(0, 0) → X(π, 0) → M(π, π) → Γ(0, 0) for the electron density x = 0.18, the chemical potential μ = –1, and the AFM correlation length ξ = 5.5. We can clearly see the dispersion of the main hole band, which is represented by a curve with high intensity with a minimum at the point Q and a maximum at the point Γ(0, 0) of the Brillouin zone. The shadow band shifted by the AFM vector Q relative to the main hole band is represented by a curve with lower intensity. This band is due to short-range AFM correlations and is determined by the mass operator (A.7). Figure 5 demonstrates the dependence of the chemical potential μ on the density x of doped electrons calculated from Eq. (4) for the spectral density (A.6):

$$\begin{gathered} x = \frac{Q}{{2N}}\sum\limits_{\mathbf{q}}^{} {\langle \tilde {c}_{{{\mathbf{k}},\sigma }}^{\dag }{{{\tilde {c}}}_{{{\mathbf{k}},\sigma }}}\rangle } \\ = \frac{{1 + x}}{{2N}}\sum\limits_{\mathbf{q}}^{} {\int\limits_{ - \infty }^\infty {\frac{{d\omega A({\mathbf{q}},\omega )}}{{\exp (\omega {\text{/}}T) + 1}}.} } \\ \end{gathered} $$
(A.8)
Fig. 4.
figure 4

Spectral density of electronic excitations (28).

Fig. 5.
figure 5

Chemical potential μ as a function of doping x.

According to this formula, the density of doped electrons does not exceed x ≤ 1.

As discussed in Subsection 3.3, ARPES experiments and experiments on the study of quantum oscillations show that, as the doping level decreases, the large hole Fermi surface is reconstructed into a small electron and two hole Fermi surfaces due to the formaion of a gap in the electron spectrum. This transformation is usually associated with the appearance of long-range AFM order. However, a similar change in the Fermi surface can also occur due to short-range AFM correlations, as discussed in the theoretical work [4]. The formation of a gap in the electron spectrum for a sufficiently large correlation length ξ at low doping can be described within our approach as follows.

Consider the mass operator (A.7) for a large correlation length ξ, when the static spin susceptibility χs(kq) has a sharp maximum at (kq) = Q = (π, π). In this case, setting ε(q) = ε(kQ) in expression (A.7), we can approximate the mass operator by the function

$$\begin{gathered} \Sigma ({\mathbf{k}},\omega ) \approx \frac{1}{{\omega - \varepsilon ({\mathbf{k}} - {\mathbf{Q}})}}\frac{1}{N} \\ \times \,\sum\limits_{\mathbf{q}}^{} {{\text{|}}t({\mathbf{q}}){{{\text{|}}}^{2}}{{\chi }_{s}}({\mathbf{k}} - {\mathbf{q}})I(T) = \frac{1}{{\omega - \varepsilon ({\mathbf{k}} - {\mathbf{Q}})}}\Delta ({\mathbf{k}}).} \\ \end{gathered} $$
(A.9)

Substituting this expression into the Green’s function (A.1), we find the spectrum of electronic excitations determined by the poles of this function:

$$\begin{gathered} {{E}_{{1,2}}} = \frac{1}{2}(\varepsilon ({\mathbf{k}}) + \varepsilon ({\mathbf{k}} - {\mathbf{Q}})) \\ \pm \frac{1}{2}\sqrt {{{{[\varepsilon ({\mathbf{k}}) - \varepsilon ({\mathbf{k}} - {\mathbf{Q}})]}}^{2}} + 4{{\Delta }^{2}}({\mathbf{k}})} \\ = 4t{\kern 1pt} '{\kern 1pt} \gamma {\kern 1pt} '({\mathbf{k}}) + 4t{\kern 1pt} ''{\kern 1pt} \gamma {\kern 1pt} ''({\mathbf{k}}) - \mu \pm \sqrt {{{{[4t\gamma ({\mathbf{k}})]}}^{2}} + {{\Delta }^{2}}({\mathbf{k}})} , \\ \end{gathered} $$
(A.10)

where formula (7) is used for ε(k). A similar spectrum is observed in ARPES experiments [35]. In our approach, the gap Δ(k) in the spectrum arises at the intersection of the main band and the shadow band. The width of the gap depends on the doping level (in our model, on the correlation length ξ). For a small value of ξ, the shadow band has low intensity, and a gap in the spectrum is not observed, which leads to a large Fermi surface determined by the main band.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babushkina, N.A., Vladimirov, A.A., Kugel, K.I. et al. Temperature Dependence of the Electrical Resistivity of Electron-Doped Cuprates. J. Exp. Theor. Phys. 131, 624–635 (2020). https://doi.org/10.1134/S1063776120090022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120090022

Navigation