Skip to main content
Log in

Temporal Asymptotic Form of the Survival Probability in the Effective Medium Approximation for Trapping of Particles in Media with Anomalous Diffusion

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2020

This article has been updated

Abstract

The capture of particles diffusing anomalously in accordance with a power law in absorbing traps is analyzed in the effective medium approximation. A new slower power-law dependence of the asymptotic form of the particle survival probability over long times has been established. This result is due to the anomalous diffusion of particles in strongly anisotropic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 02 December 2020

    erratum

REFERENCES

  1. A. A. Ovchinnikov and A. A. Belyi, Teor. Eksp. Khim. 2, 405 (1966).

    Google Scholar 

  2. G. V. Ryazanov, Sov. J. Theor. Math. Phys. 10, 181 (1972).

    Article  Google Scholar 

  3. I. M. Lifshits, Sov. Phys. Usp. 7, 549 (1964).

    Article  ADS  Google Scholar 

  4. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).

    Article  ADS  Google Scholar 

  5. J. Klafter and I. M. Sokolov, First Steps in Random Walks (Oxford Univ. Press, Oxford, 2011).

    Book  Google Scholar 

  6. F. Benitez, C. Duclut, H. Chaté, et al., Phys. Rev. Lett. 117, 100601 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  7. Sang Bub Lee, In Chan Kim, C. A. Miller, and S. Torquato, Phys. Rev. B 39, 11833 (1989).

    Article  ADS  Google Scholar 

  8. I. Fouxon and M. Holzner, Phys. Rev. E 94, 022132 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. V. Uchaikin, J. Exp. Theor. Phys. 97, 810 (2003).

    Article  ADS  Google Scholar 

  10. R. Metzler and J. Klafter, Adv. Chem. Phys. 116, 223 (2001).

    Google Scholar 

  11. J. Klafter and R. Metzler, Phys. Rep. 339, 1 (2000).

    Article  ADS  Google Scholar 

  12. Applications of Fractional Calculus in Physics, Ed. by R. Hilfer (World Science, Singapore, 2000), p. 1.

    MATH  Google Scholar 

  13. G. Weiss and S. Havlin, Phys. A (Amsterdam, Neth.) 134, 474 (1986).

  14. V. E. Arkhincheev and E. M. Baskin, Zh. Eksp. Teor. Fiz. 97, 810 (1991).

    Google Scholar 

  15. V. E. Arkhincheev, Phys. A (Amsterdam, Neth.) 307, 131 (2002).

  16. V. E. Arkhincheev, Chaos 17, 043102 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  17. Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  18. V. E. Arkhincheev, JETP Lett. 52, 399 (1990).

    ADS  Google Scholar 

  19. S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives: Theory and Its Applications (Gordon and Breach, New York, 1993).

    MATH  Google Scholar 

  20. G. J. Lapeyre and M. Dentz, Phys. Chem. Chem. Phys. 19, 29 (2017). https://doi.org/10.1039/C7CP02971C

    Article  Google Scholar 

  21. V. E. Arkhincheev, Sci. Rep. 9, 15269 (2019). https://doi.org/10.1038/s41598-019-51362-y

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Arkhincheev.

Additional information

Translated by N. Wadhwa

Derivation of the Fractional-Order Equation in the Comb Model

Derivation of the Fractional-Order Equation in the Comb Model

Let us briefly recall the comb model. This model was introduced for the first time for describing subdiffusion on percolation clusters [13]. This model includes a conducting axis (analog of the skeleton of percolation clusters) and reflects the main feature of random walks in inhomogeneous media (anomalous behavior).

Fig. 1.
figure 1

Comb model: backbone axis and fingers fixed to it.

Diffusion along the x axis in the comb model is possible only for y = 0. This means that diffusion coefficient Dxx differs from zero only for y = 0 [14, 15]:

$${{D}_{{xx}}} = {{D}_{1}}\delta (y),$$
(A.1)

i.e., the x component of the diffusion current is given by

$${{J}_{x}} = - {{D}_{{xx}}}\frac{{\partial N}}{{\partial x}}.$$
(A.2)

Diffusion along the fingers of the comb structure is of conventional type (Dyy = D2).

Consequently, random walks over the comb structure are described by diffusion tensor

$${{D}_{{ij}}} = \left( {\begin{array}{*{20}{c}} {{{D}_{1}}\delta (y)}&0 \\ 0&{{{D}_{2}}} \end{array}} \right).$$
(A.3)

Using Fick’s law Jd = –\(\hat {D}\)N for the diffusion current with diffusion tensor (A.3), we obtain the diffusion equation.

Further, we perform the Laplace transformation in time and the Fourier transformation in the x coordinate:

$$\left[ {s + {{D}_{1}}{{k}^{2}}\delta (y) - {{D}_{2}}\frac{{{{\partial }^{2}}}}{{\partial {{y}^{2}}}}} \right]G(s,k,y) = \delta (y).$$
(A.4)

Here, G(s, k, y) is the Green function with initial conditions in the form of point source δ(x)δ(y)δ(t). We will seek the expression for the Green function in form

$$G(s,k,y) = g(s,k)\exp ( - \lambda {\text{|}}y{\text{|}}).$$
(A.5)

Substituting this expression into Eq. (A.4), we obtain the regular equation and the equation with singular part δ(y):

$$[s - {{D}_{2}}{{\lambda }^{2}}]G(s,k,y) = 0,$$
(A.6)
$$[{{D}_{1}}{{k}^{2}} + 2\lambda {{D}_{2}}]\delta (y)g(s,k,y) = \delta (y).$$
(A.7)

This gives the fractional-order effective diffusion equation for random walks along the backbone axis of the comb structure:

$$\left( {\frac{{{{\partial }^{{1/2}}}}}{{\partial {{t}^{{1/2}}}}} - {{D}_{{{\text{eff}}}}}\frac{{{{\partial }^{2}}}}{{\partial {{x}^{2}}}}} \right)g(t,x) = 0.$$
(A.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhincheev, V.E. Temporal Asymptotic Form of the Survival Probability in the Effective Medium Approximation for Trapping of Particles in Media with Anomalous Diffusion. J. Exp. Theor. Phys. 131, 280–283 (2020). https://doi.org/10.1134/S1063776120060102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120060102

Navigation