Skip to main content
Log in

Comparative Study of the Two-Dimensional Plasma Excitations in the Heterostructures ZnO/MgZnO, AlAs/AlGaAs, and GaAs/AlGaAs

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The plasma oscillations in new advanced two-dimensional electron systems (2DESs) based on the heterostructures ZnO/MgZnO, AlAs/AlGaAs, and GaAs/AlGaAs are studied and compared. The relaxation times and the effective masses in samples with various electron densities in these 2DESs are found by microwave plasma spectroscopy. The specific features of the plasma oscillations in the AlAs/AlGaAs quantum wells that are induced by the filling of several valleys with electrons are revealed. The possibility of adjusting a plasmon spectrum via changing the electron concentrations in valleys is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. Amenabar, F. Lopez, and A. Mendikute, J. Infrared Millimeter Terahertz Waves 34, 152 (2013).

    Article  Google Scholar 

  2. D. M. Sheen, D. L. McMakin, and T. E. Hall, IEEE Trans. Microwave Theory Tech. 49, 1581 (2001).

    Article  ADS  Google Scholar 

  3. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, Opt. Express 11, 2549 (2003).

    Article  ADS  Google Scholar 

  4. M. Dyakonov and M. Shur, IEEE. Trans. Electron Dev. 43, 1640 (1996).

    Article  ADS  Google Scholar 

  5. M. Shur and V. Ryzhii, Int. J. High Speed Electron. Syst. 13, 575 (2003).

    Article  Google Scholar 

  6. W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. Fatimy, Y. M. Meziani, and T. Otsuji, J. Infrared Millimeter Terahertz Waves 30, 1319 (2009).

    Google Scholar 

  7. V. M. Muravev and I. V. Kukushkin, Appl. Phys. Lett. 100, 082102 (2012).

    Article  ADS  Google Scholar 

  8. V. M. Muravev, V. V. Solov’ev, A. A. Fortunatov, G. E. Tsydynzhapov, and I. V. Kukushkin, JETP Lett. 103, 792 (2016).

    Article  ADS  Google Scholar 

  9. J. Lusakowski, Semicond. Sci. Technol. 32, 013004 (2016).

    Article  ADS  Google Scholar 

  10. E. Batke, D. Heitmann, and C. W. Tu, Phys. Rev. B 34, 6951 (1986).

    Article  ADS  Google Scholar 

  11. J. Falson, Y. Kozuka, M. Uchida, J. H. Smet, T. Arima, A. Tsukazaki, and M. Kawasaki, Sci. Rep. 6, 26598 (2016).

    Article  ADS  Google Scholar 

  12. Y. J. Chung, K. W. Baldwin, K. W. West, D. Kamburov, M. Shayegan, and L. N. Pfeiffer, Phys. Rev. Mater. 1, 021002(R) (2017).

  13. S. J. Allen, Jr., H. L. Stormer, and J. C. M. Hwang, Phys. Rev. B 28, 4875(R) (1983).

    Article  ADS  Google Scholar 

  14. I. V. Kukushkin, J. H. Smet, S. A. Mikhailov, D. V. Kulakovskii, K. von Klitzing, and W. Wegscheider, Phys. Rev. Lett. 90, 156801 (2003).

    Article  ADS  Google Scholar 

  15. J. C. Maan, Th. Englert, and D. C. Tsui, Appl. Phys. Lett. 40, 609 (1982).

    Article  ADS  Google Scholar 

  16. E. Vasiliadou, G. Müller, D. Heitmann, D. Weiss, and K. von Klitzing, Phys. Rev. B 48, 23 (1993).

    Article  Google Scholar 

  17. B. M. Ashkinadze and V. I. Yudson, Phys. Rev. Lett. 83, 812 (1999).

    Article  ADS  Google Scholar 

  18. I. V. Kukushkin, J. H. Smet, K. von Klitzing, and W. Wegscheider, Nature (London, U.K.) 415, 409 (2002).

    Article  ADS  Google Scholar 

  19. L. W. Engel, D. Shahar, and C. Kurdak, Phys. Rev. Lett. 71, 2638 (1993).

    Article  ADS  Google Scholar 

  20. V. A. Volkov and S. A. Mikhailov, JETP Lett. 41, 476 (1985).

    ADS  Google Scholar 

  21. V. A. Volkov, D. V. Galchenkov, L. A. Galchenkov, I. M. Grodnenskii, O. R. Matov, and S. A. Mikhailov, JETP Lett. 44, 655 (1986).

    ADS  Google Scholar 

  22. L. Schmidt-Mende and J. L. MacManus-Driscoll, Mater. Today 10, 40 (2007).

    Article  Google Scholar 

  23. V. V. Solovyev, A. B. Van’kov, I. V. Kukushkin, J. Falson, D. Zhang, D. Maryenko, Y. Kozuka, A. Tsukazaki, J. H. Smet, and M. Kawasaki, Appl. Phys. Lett. 106, 082102 (2015).

    Article  ADS  Google Scholar 

  24. J. Falson and M. Kawasaki, Rep. Prog. Phys. 81, 056501 (2018).

    Article  ADS  Google Scholar 

  25. J. Betancourt, J. J. Saavedra-Arias, J. D. Burton, Y. Ishikawa, E. Y. Tsymbal, and J. P. Velev, Phys. Rev. B 88, 085418 (2013).

    Article  ADS  Google Scholar 

  26. A. V. Chaplik, Sov. Phys. JETP 35, 395 (1972).

    ADS  Google Scholar 

  27. V. E. Kozlov, A. B. Van’kov, S. I. Gubarev, I. V. Kukushkin, V. V. Solovyev, J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki, M. Kawasaki, and J. H. Smet, Phys. Rev. B 91, 085304 (2015).

    Article  ADS  Google Scholar 

  28. M. A. Hopkins, R. J. Nicholas, M. A. Brummell, J. J. Harris, and C. T. Foxon, Phys. Rev. B 36, 4789 (1987).

    Article  ADS  Google Scholar 

  29. F. F. Fang and W. E. Howard, Phys. Rev. Lett. 16, 797 (1966).

    Article  ADS  Google Scholar 

  30. S. Shokhovets, O. Ambacher, B. K. Meyer, and G. Gobsch, Phys. Rev. B 78, 035207 (2008).

    Article  ADS  Google Scholar 

  31. A. H. MacDonald and C. Kallin, Phys. Rev. B 40, 5795 (1989).

    Article  ADS  Google Scholar 

  32. W. Kohn, Phys. Rev. 123, 1242 (1961).

    Article  ADS  Google Scholar 

  33. M. A. Mueed, Md. Sh. Hossain, I. Jo, L. N. Pfeiffer, K. W. West, K. W. Baldwin, and M. Shayegan, Phys. Rev. Lett. 121, 036802 (2018).

    Article  ADS  Google Scholar 

  34. M. Shayegan, E. P. De Poortere, O. Gunawan, Y. P. Shkolnikov, E. Tutuc, and K. Vakili, Phys. Status Solidi B 243, 3629 (2006).

    Article  ADS  Google Scholar 

  35. V. M. Muravev, A. R. Khisameeva, V. N. Belyanin, I. V. Kukushkin, L. Tiemann, C. Reichl, W. Dietsche, and W. Wegscheider, Phys. Rev. B 92, 041303(R) (2015).

  36. A. R. Khisameeva, S. I. Gubarev, V. M. Murav’ev, and I. V. Kukushkin, JETP Lett. 106, 26 (2017).

    Article  ADS  Google Scholar 

  37. A. R. Khisameeva, A. V. Shchepetilnikov, V. M. Muravev, S. I. Gubarev, D. D. Frolov, Yu. A. Nefyodov, I. V. Kukushkin, C. Reichl, L. Tiemann, W. Dietsche, and W. Wegscheider, Phys. Rev. B 97, 115308 (2018).

    Article  ADS  Google Scholar 

  38. A. R. Khisameeva, A. V. Shchepetilnikov, V. M. Muravev, S. I. Gubarev, D. D. Frolov, Yu. A. Nefyodov, I. V. Kukushkin, C. Reichl, W. Dietsche, and W. Wegscheider, J. Appl. Phys. 125, 154501 (2019).

    Article  ADS  Google Scholar 

  39. C. Dahl, F. Brinkop, A. Wixforth, J. P. Kotthaus, J. H. English, and M. Sundaram, Solid State Commun. 80, 673 (1991).

    Article  ADS  Google Scholar 

  40. V. Shikin, S. Nazin, D. Heitmann, and T. Demel, Phys. Rev. B 43, 11903 (1991).

    Article  ADS  Google Scholar 

  41. V. A. Geyler, V. A. Margulis, and A. V. Shorokhov, Phys. Rev. B 63, 245316 (2001).

    Article  ADS  Google Scholar 

  42. R. Z. Vitlina and A. V. Chaplik, Sov. Phys. JETP 54, 536 (1981).

    Google Scholar 

  43. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  44. Y. P. Shkolnikov, E. P. De Poortere, E. Tutuc, and M. Shayegan, Phys. Rev. Lett. 89, 226805 (2002).

    Article  ADS  Google Scholar 

  45. Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. de Poortere, and M. Shayegan, Phys. Rev. Lett. 95, 066809 (2005).

    Article  ADS  Google Scholar 

  46. T. Rzesnicki, B. Piosczyk, et al., IEEE Trans. Plasma Sci. 38 (6) (2010).

  47. J. B. Gunn, Solid State Commun. 1, 88 (1963).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-72-30003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Khisameeva.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khisameeva, A.R., Shchepetilnikov, A.V., Muravev, V.M. et al. Comparative Study of the Two-Dimensional Plasma Excitations in the Heterostructures ZnO/MgZnO, AlAs/AlGaAs, and GaAs/AlGaAs. J. Exp. Theor. Phys. 130, 594–601 (2020). https://doi.org/10.1134/S1063776120020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120020053

Navigation