Skip to main content
Log in

Dynamics of Macroparticles in a Quasi-Two-Dimensional Dust–Plasma System under Directed External Action: Simulation Results

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The action of the light pressure force on a bounded region of a 2D system of dust macroparticles is simulated using the molecular dynamics method. The dynamics of dust macroparticles in the quasi-2D structure (trajectories of particles, their mean square displacement, and kinetic energy) is analyzed for various values of the nonideality parameter and laser radiation power. It is shown that by varying the radiation power, it is possible to influence the self-diffusion processes and the value of chaotic velocity of particles. Analysis is performed for different initial values of the nonideality parameter of the unperturbed dust subsystem. It is found that the interparticle interaction results in an increase in the kinetic energy of particles in the region of action, as well as beyond it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, USA, 2010).

    Google Scholar 

  2. R. E. Boltnev, M. M. Vasiliev, E. A. Kononov, et al., Sci. Rep. 9, 3261 (2019).

    Article  ADS  Google Scholar 

  3. F. M. Trukhachev, M. M. Vasil’ev, O. F. Petrov, et al., Vestn. OIVT 1, 26 (2018).

    Google Scholar 

  4. B. Liu, J. Goree, V. Nosenko, and L. Boufendi, Phys. Plasmas 10, 9 (2003).

    Article  ADS  Google Scholar 

  5. O. S. Vaulina, A. Yu. Repin, O. F. Petrov, and K. G. Adamovich, J. Exp. Theor. Phys. 102, 986 (2006).

    Article  ADS  Google Scholar 

  6. O. S. Vaulina, O. F. Petrov, A. V. Gavrikov, and V. E. Fortov, Plasma Phys. Rep. 33, 278 (2007).

    Article  ADS  Google Scholar 

  7. N. A. Vorona, A. V. Gavrikov, A. S. Ivanov, O. F. Petrov, V. E. Fortov, and I. A. Shakhova, J. Exp. Theor. Phys. 105, 824 (2007).

    Article  ADS  Google Scholar 

  8. V. Nosenko and J. Goree, Phys. Rev. Lett. 93, 155001 (2004).

    Article  ADS  Google Scholar 

  9. V. E. Fortov, O. F. Petrov, O. S. Vaulina, et al., Phys. Rev. Lett. 109, 055002 (2012).

    Article  ADS  Google Scholar 

  10. A. Gavrikov, I. A. Shakhova, A. S. Ivanov, et al., Phys. Lett. A 336, 378 (2005).

    Article  ADS  Google Scholar 

  11. C. Bechinger, R. D. Leonardo, H. Löwen, et al., Rev. Mod. Phys. 88, 045006 (2016).

    Article  ADS  Google Scholar 

  12. N. N. Antonov, A. V. Gavrikov, A. S. Ivanov, O. F. Petrov, R. A. Timirkhanov, and V. E. Fortov, J. Exp. Theor. Phys. 114, 1072 (2012).

    Article  ADS  Google Scholar 

  13. V. E. Fortov, O. F. Petrov, O. S. Vaulina, and K. G. Koss, JETP Lett. 97, 322 (2013).

    Article  ADS  Google Scholar 

  14. O. F. Petrov, M. M. Vasiliev, Ye Tun, K. B. Statsenko, O. S. Vaulina, E. V. Vasilieva, and V. E. Fortov, J. Exp. Theor. Phys. 120, 327 (2015).

    Article  ADS  Google Scholar 

  15. K. R. Sütterlin, A. Wysocki, C. Räth, et al., Plasma Phys. Control. Fusion 52, 124042 (2010).

    Article  ADS  Google Scholar 

  16. O. F. Petrov, M. M. Vasiliev, O. S. Vaulina, et al., Europhys. Lett. 111, 45002 (2015).

    Article  ADS  Google Scholar 

  17. D. Samsonov, S. K. Zhdanov, R. A. Quinn, et al., Phys. Rev. Lett. 92, 255004 (2004).

    Article  ADS  Google Scholar 

  18. M. M. Vasiliev, L. G. D’yachkov, S. N. Antipov, et al., Europhys. Lett. 93, 15001 (2011).

    Article  ADS  Google Scholar 

  19. G. I. Sukhinin, A. V. Fedoseev, M. V. Salnikov, et al., Phys. Rev. E 95, 063207 (2017).

    Article  ADS  Google Scholar 

  20. K. G. Koss, O. F. Petrov, M. I. Myasnikov, K. B. Statsenko, and M. M. Vasiliev, J. Exp. Theor. Phys. 123, 98 (2016).

    Article  ADS  Google Scholar 

  21. K. Arkar, M. M. Vasiliev, and O. F. Petrov, J. Phys.: Conf. Ser. 1147, 012113 (2019).

    Google Scholar 

  22. T. I. Morozova, S. I. Kopnin, and S. I. Popel’, Vopr. At. Nauki Tekh. 82, 84 (2012).

    Google Scholar 

  23. E. A. Lisin and O. S. Vaulina, J. Exp. Theor. Phys. 115, 947 (2012).

    Article  ADS  Google Scholar 

  24. E. A. Lisin, R. A. Timirkhanov, O. S. Vaulina, et al., New J. Phys. 15, 053004 (2013).

    Article  ADS  Google Scholar 

  25. O. S. Vaulina and I. E. Dranzhevski, Phys. Scr. 73, 577 (2006).

    Article  ADS  Google Scholar 

  26. O. S. Vaulina, X. G. Adamovich, O. F. Petrov, et al., Phys. Rev. E 77, 066403 (2008).

    Article  ADS  Google Scholar 

  27. O. S. Vaulina, X. G. Adamovich, O. F. Petrov, et al., Phys. Rev. E 77, 066404 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Fairushin.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fairushin, I.I., Petrov, O.F. & Vasiliev, M.M. Dynamics of Macroparticles in a Quasi-Two-Dimensional Dust–Plasma System under Directed External Action: Simulation Results. J. Exp. Theor. Phys. 130, 477–481 (2020). https://doi.org/10.1134/S106377612002003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612002003X

Navigation