Skip to main content
Log in

Conductivity of the Two-Dimensional Rayleigh Model Near the Percolation Threshold: A Subthreshold Region of Concentrations

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The conductivity of the two-dimensional Rayleigh model near a critical point, the percolation threshold, is investigated. The effective conductivity of the model with a metal–prefect conductor phase transition is calculated in the binary (pair) approximation. For the alternative model with a metal–insulator phase transition the corresponding effective conductivity is determined from the Keller–Dykhne reciprocity relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lord Rayleigh, Philos. Mag. 34 (211), 481 (1892).

    Article  Google Scholar 

  2. W. T. Perrins, D. B. McKenzie, and B. C. McPhedran, Proc. R. Soc. London, Ser. A 369, 207 (1979).

    Article  ADS  Google Scholar 

  3. B. Ya. Balagurov and V. A. Kashin, J. Exp. Theor. Phys. 90, 850 (2000).

    Article  ADS  Google Scholar 

  4. B. Ya. Balagurov, Electrophysical Properties Composites. Macroscopic Theory (URSS, Moscow, 2015) [in Russian].

    Google Scholar 

  5. B. Ya. Balagurov, Sov. Phys. JETP 67, 486 (1988).

    Google Scholar 

  6. B. Ya. Balagurov, Method of Eigenfunctions in Macroscopic Electrostatics (URSS, Moscow, 2016) [in Russian].

    Google Scholar 

  7. J. B. Keller, J. Math. Phys. 5, 548 (1964).

    Article  ADS  Google Scholar 

  8. A. M. Dykhne, Sov. Phys. JETP 32, 63 (1970).

    ADS  Google Scholar 

  9. A. L. Efros and B. I. Shrlovskii, Phys. Status Solidi B 76, 475 (1976).

    Article  ADS  Google Scholar 

  10. J. P. Straley, J. Phys. C 9, 783 (1976).

    Article  ADS  Google Scholar 

  11. F. M. Morse and G. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1960), Vol. 2.

Download references

ACKNOWLEDGMENTS

In conclusion I express my gratitude to D.A. Golovneva and N.A. Khlopotunova for their help in preparing the manuscript of the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ya. Balagurov.

Additional information

Translated by V. Astakhov

APPENDIX

APPENDIX

Knowing the complete system of eigenfunctions also allows other problems related to the inclusion under consideration—a macroscopic body, for example, about its dipole polarizability, to be solved.

In the case of a body placed in a uniform electric field of strength E0, the corresponding potential has the following asymptotics (at D = 2):

$$r \to \infty {\text{:}}\,\,\,\varphi ({\mathbf{r}}) \eqsim - ({{{\mathbf{E}}}_{0}} \cdot {\mathbf{r}}) + 2\frac{{({\mathbf{p}} \cdot {\mathbf{r}})}}{{{{r}^{2}}}} + ....$$
(A.1)

Here,

$${\mathbf{p}} = \hat {\Lambda }{{{\mathbf{E}}}_{0}}$$
(A.2)

is the dipole moment and \(\hat {\Lambda }\) is the dipole polarizability tensor. According to [5, 6], for the components of this tensor we have

$${{\Lambda }_{{\alpha \beta }}} = - 4\pi (1 - h)\sum\limits_\nu ^{} {\frac{{{{d}_{{\nu \alpha }}}{{d}_{{\nu \beta }}}}}{{h + {{\varepsilon }_{\nu }}}},} $$
(A.3)

where dν is an analog of the dipole moment in the asymptotics of the polarization eigenfunction:

$$r \to \infty {\text{:}}\,\,\,{{\psi }_{\nu }}({\mathbf{r}}) \eqsim 2\frac{{({\mathbf{r}} \cdot {{{\mathbf{d}}}_{\nu }})}}{{{{r}^{2}}}} + ...$$
(A.4)

In Eq. (A.3)h = ε21 is the ratio of the permittivities for the body and the surrounding medium. For the pair of circles under consideration the functions \(\psi _{{2n}}^{{(e)}}\)(r) and \(\psi _{{1n}}^{{(e)}}\)(r) have a dipole behavior when r → ∞. For the corresponding dipole moments we have

$${{{\mathbf{d}}}_{{2n}}} = n{{( - 1)}^{n}}c{{B}_{n}}{{{\mathbf{i}}}_{x}},\quad {{{\mathbf{d}}}_{{1n}}} = n{{( - 1)}^{n}}c{{A}_{n}}{{{\mathbf{i}}}_{y}}.$$
(A.5)

For the components of the polarizability tensor \(\hat {\Lambda }\) we obtain

$${{\Lambda }_{{xx}}} = - 2{{c}^{2}}\sum\limits_{n = 1}^\infty {n\frac{{1 - h}}{{h + \coth n{{\xi }_{0}}}}\frac{{{{e}^{{ - n{{\xi }_{0}}}}}}}{{\sinh n{{\xi }_{0}}}}} ,$$
(A.6)
$${{\Lambda }_{{yy}}} = - 2{{c}^{2}}\sum\limits_{n = 1}^\infty {n\frac{{1 - h}}{{h + \tanh n{{\xi }_{0}}}}\frac{{{{e}^{{ - n{{\xi }_{0}}}}}}}{{\cosh n{{\xi }_{0}}}}} .$$
(A.7)

Note that Eqs. (A.6) and (A.7) satisfy the equalities

$${{\Lambda }_{{xx}}}(h) = - {{\Lambda }_{{yy}}}(1{\text{/}}h),\quad {{\Lambda }_{{yy}}}(h) = - {{\Lambda }_{{xx}}}(1{\text{/}}h),$$
(A.8)

which are a corollary of the reciprocity relation (see [4]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balagurov, B.Y. Conductivity of the Two-Dimensional Rayleigh Model Near the Percolation Threshold: A Subthreshold Region of Concentrations. J. Exp. Theor. Phys. 130, 562–570 (2020). https://doi.org/10.1134/S1063776120020016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120020016

Navigation