Skip to main content
Log in

Probe Mössbauer Diagnostics of Charge Ordering in Manganites CaCuxMn7–xO12 (0 ≤ x ≤ 1)

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We present the results of our 57Fe probe Mössbauer study in manganites CaCuxMn6.96–x57Fe0.04O12 (0 ≤ x ≤ 1). We have established that for compositions 0 ≤ x ≤ 0.15 near the structural R\(\bar {3}\)Im\(\bar {3}\) transition (at TTCO), an increase in the temperature leads to a decrease in the content of the rhombohedral phase (R\(\bar {3}\)) against a background of the “nucleation” and gradual increase in the fraction of the cubic phase (Im\(\bar {3}\)), in which all octahedral positions of manganese are equivalent due to the electron exchange Mn3+ ↔ Mn4+. The increase in the electron exchange frequency is assumed to be related to a weakening of the electron–lattice interaction of Jahn–Teller Mn3+ cations as x → 0.4. An increase in the copper content leads to a sharp decrease in the phase transition temperature TCO. A single component corresponding to the cubic phase (Im\(\bar {3}\)) is present in the spectrum starting from x ≥ 0.4. Based on our Mössbauer data, we have constructed a Tx phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. M. Loktev and Yu. G. Pogorelov, J. Low Temp. Phys. 26, 171 (2000).

    Article  Google Scholar 

  2. C. N. R. Rao, A. Arulraj, P. N. Santosh, et al., Chem. Mater. 10, 2714 (1998).

    Article  Google Scholar 

  3. C. N. R. Rao, J. Phys. Chem. B 104, 5877 (2000).

    Article  Google Scholar 

  4. D. V. Efremov, J. van den Brink, and D. I. Khomskii, Phys. B (Amsterdam, Neth.) 359–361, 1433 (2005).

  5. D. V. Efremov, J. van den Brink, and D. I. Khomskii, Nat. Mater. 3, 853 (2004).

    Article  ADS  Google Scholar 

  6. J. B. Goodenough, Phys. Rev. 100, 564 (1955).

    Article  ADS  Google Scholar 

  7. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

    Article  ADS  Google Scholar 

  8. J. García, M. C. Sánchez, J. Blasco, et al., J. Phys.: Condens. Matter 13, 3243 (2001).

    ADS  Google Scholar 

  9. J. Rodríguez-Carvajal, A. Daoud-Aladine, L. Pinsard-Gaudart, et al., Phys. B (Amsterdam, Neth.) 320, 1 (2002).

  10. A. Daoud-Aladine, J. Rodríguez-Carvajal, L. Pinsard-Gaudart, et al., Phys. Rev. Lett. 89, 097205 (2002).

    Article  ADS  Google Scholar 

  11. A. Daoud-Aladine, C. Perca, L. Pinsard-Gaudart, et al., Phys. Rev. Lett. 101, 166404 (2008).

    Article  ADS  Google Scholar 

  12. A. Trokiner, A. Yakubovskii, S. Verkhovskii, et al., Phys. Rev. B 74, 092403 (2006).

    Article  ADS  Google Scholar 

  13. A. N. Vasil’ev and O. S. Volkova, J. Low Temp. Phys. 33, 895 (2007).

    Article  Google Scholar 

  14. I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina, et al., Solid State Commun. 142, 509 (2007).

    Article  ADS  Google Scholar 

  15. I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina, et al., Phys. Rev. B 76, 214407 (2007).

    Article  ADS  Google Scholar 

  16. B. Bochu, J. L. Buevoz, J. Chenavas, et al., Solid State Commun. 36, 133 (1980).

    Article  ADS  Google Scholar 

  17. I. O. Troyanchuk and A. N. Chobot, Crystallogr. Rep. 42, 983 (1997).

    ADS  Google Scholar 

  18. R. Przenioslo, I. Sosnowska, D. Hohlwein, et al., Solid State Commun. 111, 687 (1999).

    Article  ADS  Google Scholar 

  19. W. S lawinski, R. Przenioslo, I. Sosnowska, et al., J. Solid State Chem. 179, 2443 (2006).

  20. R. Przeniosł o, I. Sosnowska, W. van Beek, et al., J. Alloys Compd. 362, 218 (2004).

    Article  Google Scholar 

  21. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  22. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1622, 40 (2014).

    Article  ADS  Google Scholar 

  23. A. V. Sobolev, V. S. Rusakov, A. S. Moskvin, et al., J. Phys.: Condens. Matter 29, 275803 (2017).

    Google Scholar 

  24. J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 77, 172409 (2008).

    Article  ADS  Google Scholar 

  25. Z. Cheng, Z. Wang, N. Di, et al., Appl. Phys. Lett. 83, 1587 (2003).

    Article  ADS  Google Scholar 

  26. E. K Abdel-Khalek, W. M. El-Meligy, E. A. Mohamed, et al., J. Phys.: Condens. Matter 21, 026003 (2009).

    ADS  Google Scholar 

  27. X. Ma, Z. Kou, N. Di, et al., Phys. Status Solidi B 241, 3029 (2004).

    Article  ADS  Google Scholar 

  28. M. Pissas and A. Simopoulos, J. Phys.: Condens. Matter 16, 7419 (2004).

    ADS  Google Scholar 

  29. J.-S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 96, 247202 (2006).

    Article  ADS  Google Scholar 

  30. F. Rivadulla, M. Otero-Leal, A. Espinosa, et al., Phys. Rev. Lett. 96, 016402 (2006).

    Article  ADS  Google Scholar 

  31. A. Trokiner, S. Verkhovskii, A. Gerashenko, et al., Phys. Rev. B 87, 125142 (2013).

    Article  ADS  Google Scholar 

  32. M. Pissas, G. Papavassiliou, E. Devlin, et al., Eur. Phys. J. B 47, 221 (2005).

    Article  ADS  Google Scholar 

  33. A. Simopoulos, M. Pissas, G. Kallias, et al., Phys. Rev. B 59, 1263 (1999).

    Article  ADS  Google Scholar 

  34. J. M. Barandiaran, J. M. Greneche, T. Hernandez, et al., J. Phys.: Condens. Matter 14, 12563 (2002).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-33-20214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Glazkova.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazkova, I.S., Rusakov, V.S., Sobolev, A.V. et al. Probe Mössbauer Diagnostics of Charge Ordering in Manganites CaCuxMn7–xO12 (0 ≤ x ≤ 1). J. Exp. Theor. Phys. 129, 1017–1028 (2019). https://doi.org/10.1134/S1063776119110104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119110104

Navigation