Skip to main content
Log in

Conductance Distribution in 1D Systems: Dependence on the Fermi Level and the Ideal Leads

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The correct definition of the conductance of finite systems implies a connection to the system of the massive ideal leads. Influence of the latter on the properties of the system appears to be rather essential and is studied below on the simplest example of the 1D case. In the log-normal regime, this influence is reduced to the change of the absolute scale of conductance, but generally changes the whole distribution function. Under the change of the system length L, its resistance may undergo the periodic or aperiodic oscillations. Variation of the Fermi level induces qualitative changes in the conductance distribution, resembling the smoothed Anderson transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. It should be stressed, that the limit L → 0 is indeed formal, since the results (7) and (8) are restricted by the condition L\( \gtrsim \) 1/κ.

  2. In particular, the analysis of fourth moments for matrices with the complex elements looks rather hopeless, since it demands diagonalization of the matrix of large size.

  3. We have listed all possible combinations. Indeed, a change of the δ sign in (43), (47) leads to the analogous matrices, which can be transformed to the initial form, if the components of columns are renumbered in the inverse order; so the odd powers of δ do not appear. Since we consider the limit δ ~ \({{\epsilon }^{2}}\) → 0 (see Eq. (45)), then only combinations δ2n\({{\epsilon }^{{2m}}}\) with 4n + 2m ≤ 6 for (43) and 4n + 2m ≤ 10 for (47) are possible; among them only combinations with nm do not have singularities for δ → 0.

  4. For this, strictly speaking, one should average (32) over the n variations of order 1/δ.

  5. Let us remind that the Fourier transform of P(ρ) gives the characteristic function F(t) = 〈eiρt〉, which is the generating function of moments, F(t) = \(\sum\nolimits_{n = 0}^\infty {{{{(it)}}^{n}}} \)〈ρn〉/n!. If all moments of the distribution are known, then one can construct F(t), while P(ρ) is given by the inverse Fourier transform.

  6. Comparison of (44) and (48) shows that the periods of oscillations for 〈ρ〉 and 〈ρ2〉 differ by a factor 211/3. As clear from Section 4 (see Footnote 3), the right hand side of the equation for x may contain only combinations δ2n\({{\epsilon }^{{2m}}}\) with nm, of which only δ2n\({{\epsilon }^{{2n}}}\) ~ W2n remain finite in the δ → 0 limit. Since for x ~ δ ~ \({{\epsilon }^{2}}\) all terms of the equation have the same order of magnitude, the exponent of growth x for 〈ρn〉 at δ = 0 satisfies the equation x2n+ 1 = c1δ2\({{\epsilon }^{2}}\)x2n– 2 + c2δ4\({{\epsilon }^{4}}\)x2n– 5 + …, whose nontrivial roots are of order (δ2\({{\epsilon }^{2}}\))1/3 independently of n.

  7. In this case the parameter γ ~ 1 and does not have the essential evolution.

REFERENCES

  1. P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B 22, 3519 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Landauer, IBM J. Res. Dev. 1, 223 (1957);

    Article  Google Scholar 

  3. Philos. Mag. 21, 863 (1970);

  4. E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981).

    Article  ADS  Google Scholar 

  5. D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  6. D. C. Langreth and E. Abrahams, Phys. Rev. B 24, 2978 (1981).

    Article  ADS  Google Scholar 

  7. P. W. Anderson, Phys. Rev. B 23, 4828 (1981);

    Article  ADS  Google Scholar 

  8. H. L. Engquist and P. W. Anderson, Phys. Rev. B 24, 1151 (1981).

    Article  ADS  Google Scholar 

  9. D. J. Thouless, Phys. Rev. Lett. 47, 972 (1981).

    Article  ADS  Google Scholar 

  10. M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986);

    Article  ADS  Google Scholar 

  11. M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).

    Article  ADS  Google Scholar 

  12. M. Ya. Azbel, J. Phys. C 14, L225 (1981).

    Article  ADS  Google Scholar 

  13. A. D. Stone and A. Szafer, IBM J. Res. Dev. 32, 384 (1988).

    Article  Google Scholar 

  14. I. M. Suslov, J. Exp. Theor. Phys. 115, 897 (2012).

    Article  ADS  Google Scholar 

  15. I. M. Suslov, J. Exp. Theor. Phys. 124, 763 (2017).

    Article  ADS  Google Scholar 

  16. V. I. Melnikov, Sov. Phys. Solid State 23, 444 (1981).

    Google Scholar 

  17. A. A. Abrikosov, Solid State Commun. 37, 997 (1981).

    Article  ADS  Google Scholar 

  18. N. Kumar, Phys. Rev. B 31, 5513 (1985).

    Article  ADS  Google Scholar 

  19. B. Shapiro, Phys. Rev. B 34, 4394 (1986).

    Article  ADS  Google Scholar 

  20. P. Mello, Phys. Rev. B 35, 1082 (1987).

    Article  ADS  Google Scholar 

  21. B. Shapiro, Philos. Mag. 56, 1031 (1987).

    Article  ADS  Google Scholar 

  22. I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  23. X. Chang, X. Ma, M. Yepez, A. Z. Genack, and P. A. Mello, Phys. Rev. B 96, 180203 (2017).

    Article  ADS  Google Scholar 

  24. L. I. Deych, D. Zaslavsky, and A. A. Lisyansky, Phys. Rev. Lett. 81, 5390 (1998).

    Article  ADS  Google Scholar 

  25. L. I. Deych, A. A. Lisyansky, and B. L. Altshuler, Phys. Rev. Lett. 84, 2678 (2000);

    Article  ADS  Google Scholar 

  26. Phys. Rev. B 64, 224202 (2001).

  27. L. I. Deych, M. V. Erementchouk, and A. A. Lisyansky, Phys. Rev. Lett. 90, 126601 (2001).

    Article  ADS  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-relativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977).

  29. B. L. Altshuler, JETP Lett. 41, 648 (1985);

    ADS  Google Scholar 

  30. B. L. Altshuler and D. E. Khmelnitskii, JETP Lett. 42, 359 (1985).

    ADS  Google Scholar 

  31. P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985);

    Article  ADS  Google Scholar 

  32. P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039 (1987).

    Article  ADS  Google Scholar 

  33. D. Braun et al., Phys. Rev. B 64, 155107 (2001).

    Article  ADS  Google Scholar 

  34. I. Travenec, Phys. Rev. B 69, 033094 (2004).

    Article  ADS  Google Scholar 

  35. M. Ruhlender, P. Markos, and C. M. Soukoulis, Phys. Rev. B 64, 172202 (2001).

    Article  ADS  Google Scholar 

  36. A. O. Gel’fand, Calculus of Finite Differences (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  37. I. M. Suslov, J. Exp. Theor. Phys. 127, 131 (2018).

    Article  ADS  Google Scholar 

  38. M. Kappus and F. Wegner, Z. Phys. B 45, 15 (1981).

    Article  ADS  Google Scholar 

  39. V. E. Kravtsov and V. I. Yudson, Ann. Phys. (N.Y.) 326, 1672 (2011).

    Article  ADS  Google Scholar 

  40. S. Washburn and R. A. Webb, Adv. Phys. 35, 375 (1986).

    Article  ADS  Google Scholar 

  41. D. Mailly and M. Sanquer, J. Phys. (France) I 2, 357 (1992).

  42. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishman, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  43. A. Cohen, Y. Roth, and B. Shapiro, Phys. Rev. B 38, 12125 (1988).

    Article  ADS  Google Scholar 

  44. I. M. Suslov, Philos. Mag. 99, 247 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Suslov.

Appendices

EVOLUTION OF MOMENTS FOR THE COORDINATE TRANSFER MATRIX

For the coordinate transfer matrix the following evolution equations are valid

$${{z}_{{n + 1}}} = (E - {{V}_{n}}){{z}_{n}} + {{y}_{n}},\quad {{y}_{{n + 1}}} = - {{z}_{n}},$$
((A.1))

where zn = \(\tau _{{12}}^{{(n - 1)}}\), yn = \(\tau _{{11}}^{{(n - 1)}}\) with the initial conditions z1 = 0, y1 = 1, or zn = \(\tau _{{22}}^{{(n - 1)}}\), yn = \(\tau _{{21}}^{{(n - 1)}}\) with the initial conditions z1 = 1, y1 = 0. For the second moments one has

$$\left( \begin{gathered} \overline {z_{{n + 1}}^{2}} \\ \overline {{{z}_{{n + 1}}}{{y}_{{n + 1}}}} \\ \overline {y_{{n + 1}}^{2}} \\ \end{gathered} \right) = \left( {\begin{array}{*{20}{c}} {{{E}^{2}} + {{W}^{2}}}&{2E}&1 \\ { - E}&{ - 1}&0 \\ 1&0&0 \end{array}} \right)\left( \begin{gathered} \overline {z_{n}^{2}} \\ \overline {{{z}_{n}}{{y}_{n}}} \\ \overline {y_{n}^{2}} \\ \end{gathered} \right),$$
((A.2))

and suggesting their exponential behavior λn with λ = 1 + x, obtains the equation for x

$${{x}^{3}} - {{x}^{2}}({{E}^{2}} - 4) - x({{E}^{2}} - 4) = {{W}^{2}}(2 + 3x + {{x}^{2}}).$$
((A.3))

Setting E2 – 4 = 4δ2, W2 = 4\({{\epsilon }^{2}}\)δ2 and taking the limit δ → 0, \(\epsilon \) → 0, δ/\({{\epsilon }^{2}}\) = const, one can verify that (A.3) coincides with (44).

Analogously, for the fourth moments one has a system of equations

$$\left( \begin{gathered} \overline {z_{{n + 1}}^{4}} \\ \overline {z_{{n + 1}}^{3}{{y}_{{n + 1}}}} \\ \overline {z_{{n + 1}}^{2}y_{{n + 1}}^{2}} \\ \overline {{{z}_{{n + 1}}}y_{{n + 1}}^{3}} \\ \overline {y_{{n + 1}}^{4}} \\ \end{gathered} \right) = \left( {\begin{array}{*{20}{c}} {{{E}^{4}} + 6{{E}^{2}}{{W}^{2}}}&{4{{E}^{3}} + 12E{{W}^{2}}}&{6{{E}^{2}} + 6{{W}^{2}}}&{4E}&1 \\ { - {{E}^{3}} - 3E{{W}^{2}}}&{ - 3{{E}^{2}} - 3{{W}^{2}}}&{ - 3E}&{ - 1}&0 \\ {{{E}^{2}} + {{W}^{2}}}&{2E}&1&0&0 \\ { - E}&{ - 1}&0&0&0 \\ 1&0&0&0&0 \end{array}} \right)\left( \begin{gathered} \overline {z_{n}^{4}} \\ \overline {z_{n}^{3}{{y}_{n}}} \\ \overline {z_{n}^{2}y_{n}^{2}} \\ \overline {{{z}_{n}}y_{n}^{3}} \\ \overline {y_{n}^{4}} \\ \end{gathered} \right).$$
((A.4))

Suggesting that the moments behave as λn with λ = 1 + x, we have the equation for x

$$\begin{gathered} - {{x}^{5}} + {{x}^{4}}({{E}^{2}}\, + \,1)({{E}^{2}} - 4) \\ + \,{{x}^{3}}({{E}^{2}}\, - \,4)( - {{E}^{4}} + 5{{E}^{2}} + 1) \\ \, - {{x}^{2}}2{{E}^{2}}{{({{E}^{2}} - 4)}^{2}} - x{{E}^{2}}{{({{E}^{2}} - 4)}^{2}} \\ \, + {{W}^{2}}[ - 6{{E}^{2}}({{E}^{2}} - 4) - 15x{{E}^{2}}({{E}^{2}} - 4) \\ \, + {{x}^{2}}( - 12{{E}^{4}} + 60{{E}^{2}} - 6) \\ \, + {{x}^{3}}( - 3{{E}^{4}} + 30{{E}^{2}} - 9) + {{x}^{4}}(6{{E}^{2}} - 3)] = 0, \\ \end{gathered} $$
((A.5))

where terms of the higher order in W2 are omitted. Setting E2 – 4 = 4δ2, W2 = 4\({{\epsilon }^{2}}\)δ2 and retaining the main terms at the indicated limiting transition, we come to Eq. (48).

THE ASYMPTOTIC FORMS OF THE INTEGRAL (70)

Using the evenness of the integrand of (70) in variables \(\tilde {\varphi }\) = φ – π/2, \(\tilde {\theta }\) = θ – π/2 and setting x = sinφ, y = sinθ, we have

$$\begin{gathered} P(\rho ) = \frac{1}{{{{\pi }^{2}}t}}\int\limits_{ - 1}^1 {\frac{{dx}}{{\sqrt {1 - {{x}^{2}}} }}\int\limits_{ - 1}^1 {\frac{{dy}}{{\sqrt {1 - {{y}^{2}}} }}\exp \left\{ { - \frac{{S(x,y)}}{t}} \right\},} } \\ S(x,y) = {{({{\Delta }_{1}}\sqrt {1 + \rho } x + {{\Delta }_{2}}\sqrt \rho y)}^{2}} + \rho (1 - {{y}^{2}}). \\ \end{gathered} $$
((B.1))

Configuration of saddle points is essentially different for ρ < ρc and ρ > ρc, where ρc = \(\Delta _{1}^{2}\). In the first case the maximum of the exponent is reached at x = xc, y = –1 or x = –xc, y = 1, where xc = Δ2\(\sqrt \rho \)1\(\sqrt {1 + \rho } \), while in the second case at x = 1, y = –1 or x = –1, y = 1. Let δx and δy are deviations of x and y from the extremum point. For ρ < ρc we retain in S(x, y) the quadratic term in δx and the linear term in δy, setting x = xc, 1 – y2 = 2δy in the pre-exponential; then

$$P(\rho ) = \frac{1}{\pi }\sqrt {\frac{1}{{\rho ({{\rho }_{c}} - \rho )}}} ,$$
((B.2))

which is the limiting form of the distribution for t → 0.

For ρ > ρc we have

$$S(x,y)\, = \,{{S}_{c}}\, + \,A\delta x\, + \,B\delta y\, + \,C{{(\delta x\, - \,{{x}_{c}}\delta y)}^{2}}\, - \,\rho {{(\delta y)}^{2}},$$
((B.3))

where Sc, A, B are defined in Eq. (73) and C = \(\Delta _{1}^{2}\)(1 + ρ). For large ρ the linear terms in δx, δy are sufficient in S(x, y) and in radicals; then

$$P(\rho ) = \frac{1}{\pi }\sqrt {\frac{1}{{AB}}} \exp \left( { - \frac{{{{S}_{c}}}}{t}} \right),$$
((B.4))

which is the last asymptotics in (72), (74)–(77).

The results (B.2), (B.4) are not applicable for ρ close to ρc, since the coefficient A turns to zero at ρ = ρc. Setting δ\(\tilde {x}\) = δxxcδy and omitting the last term in (B.3), we have

$$S(x,y) = {{S}_{c}} + A\delta \tilde {x} + C{{(\tilde {\delta }\tilde {x})}^{2}} + 2\rho \delta y.$$
((B.5))

For A2Ct fluctuations of δ\(\tilde {x}\) are determined by the quadratic term, and Aδ\(\tilde {x}\) can be omitted; then in the small vicinity of ρc

$$P(\rho ) = \frac{1}{{2\pi }}\sqrt {\frac{1}{{2\pi \rho }}} \frac{{\Gamma (1{\text{/}}4)}}{{{{{(Ct)}}^{{1/4}}}}},\quad {\text{|}}\rho - {{\rho }_{c}}{\text{|}} \lesssim {{(Ct)}^{{1/2}}},$$
((B.6))

so divergency at ρ → ρc is eliminated and the third asymptotics in (72) and (75) is recovered. Under the indicated condition, this result remains valid for ρ < ρc, when A is negative, but small in modulus. In fact, Eq. (B.6) takes place in the cases t\(\Delta _{1}^{2}\) ≪ 1 and t ≪ 1 ≪ \(\Delta _{1}^{2}\), when the fluctuation δy ~ t/ρ is small in comparison with δ\(\tilde {x}\) ~ \(\sqrt {t{\text{/}}C} \), so δ\(\tilde {x}\) ≈ δx and one can set 1 – x2 = 2δ\(\tilde {x}\), 1 – y2 = 2δy in the pre-exponential. The inverse situation is realized in the case \(\Delta _{1}^{2}\) ≫ 1, t ≫ 1, when δy ≫ δ\(\tilde {x}\) and 1 – x2 ≈ 2δx = 2δ\(\tilde {x}\) + 2xcδy ≈ 2δy in the preexponential; then we come to the result

$$\begin{gathered} P(\rho ) = \frac{1}{{2{{\pi }^{2}}}}\sqrt {\frac{\pi }{{\rho \Delta _{1}^{2}t}}} \ln \frac{{\Delta _{1}^{2}t}}{\rho }\exp \left( { - \frac{{{{S}_{c}}}}{t}} \right), \\ {{\rho }_{c}}{\text{/}}t \lesssim {{\rho }_{c}} \lesssim {{\rho }_{c}}t, \\ \end{gathered} $$
((B.7))

determining the penultimate asymptotics in (76), (77). The condition A2Ct corresponds to (ρ – ρc)2\(\Delta _{1}^{2}\)ρt, which for t ≫ 1 is reduced to the given in (B.7). If (B.6) is valid in the small vicinity of ρc, the wide range of validity arises for (B.7).

For small ρ the saddle point approximation is not applicable, and the initial form of (70) is convenient. If t\(\Delta _{1}^{2}\), then saddle point integration over φ is still possible and leads to expression

$$\begin{gathered} P(\rho ) = \frac{1}{{{{\pi }^{2}}t}}\int\limits_{ - \pi /2}^{\pi /2} {d\theta \sqrt {\frac{{\pi t}}{{\Delta _{1}^{2} - \rho + \Delta _{2}^{2}\rho {{{\sin }}^{2}}\theta }}} } \\ \times \exp \left\{ { - \frac{\rho }{t}{{{\sin }}^{2}}\theta } \right\}. \\ \end{gathered} $$
((B.8))

For \(\Delta _{1}^{2}\) ≪ 1 one has Δ2 ≈ 1; if ρ ≪ t, then only \(\Delta _{1}^{2}\) can be retained in the denominator, while integration over θ can be produced by expansion of the exponent

$$P(\rho ) = \frac{1}{\pi }\sqrt {\frac{\pi }{{\Delta _{1}^{2}t}}} \exp \left( { - \frac{\rho }{{2t}}} \right),\quad \rho \ll t,$$
((B.9))

which is the first result in (72), (75), (76). For ρ \( \gtrsim \)t one returns to the saddle point results (B.2), (B.4), (B.5).

In the case \(\Delta _{1}^{2}\) ≪ 1 and t\(\Delta _{1}^{2}\) the region of small ρ is determined by the condition ρ(1 + ρ) ≪ t2/\(\Delta _{1}^{2}\) and the integral (70) is calculated by expansion over S(φ, θ)/t till the second order, which gives the first result in (74), (77); for the opposite inequality we have AB ≈ 2Δ1Δ2\(\sqrt {\rho (1 + \rho )} \)t and A2Ct, which is sufficient for validity of (B.4).

In the case \(\Delta _{1}^{2}\) ≫ 1 and t\(\Delta _{1}^{2}\)Eq. (B.8) remains valid, but its analysis is more complicated. For t ≪ 1 we have the familiar situation: in the interval ρ \( \lesssim \)t one can retain \(\Delta _{1}^{2}\) in the denominator and obtain (B.9), while in the interval ρ \( \gtrsim \)t the saddle point results (B.2), (B.4), (B.5) are valid. For 1 ≪ t\(\Delta _{1}^{2}\) the result (B.9) is valid only for ρ \( \lesssim \) 1. In the interval 1 \( \lesssim \) ρ \( \lesssim \)t the term \(\Delta _{2}^{2}\)ρsin2θ is dominated in the denominator of (B.8), while the quantity \(\Delta _{1}^{2}\) – ρ is necessary only for cutoff of the logarithmic divergency:

$$P(\rho ) = \frac{1}{{{{\pi }^{2}}}}\sqrt {\frac{\pi }{{\rho \Delta _{1}^{2}t}}} \ln \frac{{\Delta _{1}^{2}\rho }}{{{{\rho }_{c}} - \rho }},\quad 1 \lesssim \rho \lesssim t.$$
((B.10))

In the interval t\( \lesssim \) ρ \( \lesssim \) ρc the exponent restricts integration in (B.8) by values θ2\( \lesssim \)t/ρ, so \(\Delta _{1}^{2}\)ρ in (B.10) is changed by \(\Delta _{1}^{2}\)t. In fact, both results are actual only for ρ ≪ ρc, since in the interval ρ \( \gtrsim \) ρc/t divergency at ρ → ρc is eliminated due to nonlinear terms in (B.3) and the result (B.7) is valid; so we have ln ρ for 1 \( \lesssim \) ρ \( \lesssim \)t and ln t for t\( \lesssim \) ρ \( \lesssim \) ρc/t, as is reflected in (76).

In the case \(\Delta _{1}^{2}\) ≫ 1 and t\(\Delta _{1}^{2}\), expansion over S(φ, θ)/t is possible in the interval ρ \( \lesssim \)t/\(\Delta _{1}^{2}\) and leads to the first result (77). In the interval ρ \( \gtrsim \)t/\(\Delta _{1}^{2}\) expression (B.8) is valid, where |\(\Delta _{1}^{2}\) – ρ| ≪ t, \(\Delta _{2}^{2}\) ≫ ρ≫ t and the latter term is dominant in the denominator; the logarithmic divergency is removed due to restriction (\(\Delta _{2}^{2}\)ρ/t)sin2θ \( \gtrsim \) 1, which is necessary for the saddle point integration over φ and validity of (B.8). If ρ \( \lesssim \)t, then the exponent in (B.8) is not essential and the second result (77) holds. If ρ \( \gtrsim \)t, then we have the saddle point situation and validity of (B.7) and (B.4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslov, I.M. Conductance Distribution in 1D Systems: Dependence on the Fermi Level and the Ideal Leads. J. Exp. Theor. Phys. 129, 877–895 (2019). https://doi.org/10.1134/S1063776119090139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119090139

Navigation