Skip to main content
Log in

Ab initio Calculation of Impurity–Vacancy Complexes in Diamond at High Pressure

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Optical centers in diamond are possible candidates for single-photon emitters for applications in quantum communication, biology, and medicine. The study of the pressure dependence of zero-phonon lines of these centers can provide deeper insight into the electronic and structural properties of optical centers. These studies can also be useful for fine tuning the photon emission of optical centers in diamond by applying mechanical stresses. The results of ab initio calculations obtained in the study show that the pressure dependence of the position of zero-phonon lines is attributed to the electron density redistribution, whereas the effects associated with an increase in the binding energy under pressure turn out to be an order of magnitude weaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).

    Article  ADS  Google Scholar 

  2. M. W. Doherty, N. B. Manson, P. Delaney, et al., Phys. Rep. 528, 1 (2013).

    Article  ADS  Google Scholar 

  3. V. S. Vavilov, A. A. Gippius, A. M. Zaitsev, et al., Sov. Phys. Semicond. 14, 1078 (1980).

    Google Scholar 

  4. C. D. Clark, H. Kanda, I. Kiflawi, et al., Phys. Rev. B 51, 16681 (1995).

    Article  ADS  Google Scholar 

  5. J. P. Goss, R. Jones, S. J. Breuer, et al., Phys. Rev. Lett. 77, 3041 (1996).

    Article  ADS  Google Scholar 

  6. J. P. Goss, P. R. Briddon, M. J. Rayson, et al., Phys. Rev. B 72, 035214 (2005).

    Article  ADS  Google Scholar 

  7. C. Hepp, T. Müller, V. Waselowski, et al., Phys. Rev. Lett. 112, 036405 (2014).

    Article  ADS  Google Scholar 

  8. L. J. Rogers, K. D. Jahnke, M. W. Doherty, et al., Phys. Rev. B 89, 235101 (2014).

    Article  ADS  Google Scholar 

  9. L. J. Rogers, K. D. Jahnke, M. H. Metsch, et al., Phys. Rev. Lett. 113, 263602 (2014).

    Article  ADS  Google Scholar 

  10. T. Iwasaki, F. Ishibashi, Y. Miyamoto, et al., Sci. Rep. 5, 12882 (2015).

    Article  ADS  Google Scholar 

  11. Y. N. Palyanov, I. N. Kupriyanov, Y. M. Borzdov, et al., Sci. Rep. 5, 14789 (2015).

    Article  ADS  Google Scholar 

  12. V. G. Ralchenko, V. S. Sedov, A. A. Khomich, et al., Bull. Lebedev Phys. Inst. 42, 165 (2015).

    Article  ADS  Google Scholar 

  13. E. A. Ekimov, S. G. Lyapin, K. N. Boldyrev, M. V. Kondrin, R. Khmelnitskiy, V. A. Gavva, T. V. Kotereva and M. N. Popova, JETP Lett. 102, 701 (2015).

    Article  ADS  Google Scholar 

  14. T. Iwasaki, Y. Miyamoto, T. Taniguchi, et al., Phys. Rev. Lett. 119, 253601 (2017).

    Article  ADS  Google Scholar 

  15. S. D. Tchernij, T. Herzig, J. Forneris, et al., ACS Photon. 4, 2580 (2017).

    Article  Google Scholar 

  16. E. Ekimov, S. Lyapin, and M. Kondrin, Diamond Relat. Mater. 87, 223 (2018).

    Article  ADS  Google Scholar 

  17. Y. N. Palyanov, I. N. Kupriyanov, and Y. M. Borzdov, Carbon 143, 769 (2019).

    Article  Google Scholar 

  18. S. Pezzagna, D. Rogalla, D. Wildanger, et al., New J. Phys. 13, 035024 (2011).

    Article  ADS  Google Scholar 

  19. E. A. Ekimov and M. V. Kondrin, Phys. Usp. 60, 539 (2017).

    Article  ADS  Google Scholar 

  20. F. Treussart and I. I. Vlasov, in Nanodiamonds: Advanced Material Analysis, Properties and Applications, Ed. by J.-C. Arnault, Micro and Nano Technologies (Elsevier, Amsterdam, 2017), p. 155.

  21. E. Neu, C. Hepp, M. Hauschild, et al., New J. Phys. 15, 043005 (2013).

    Article  ADS  Google Scholar 

  22. E. A. Ekimov, V. S. Krivobok, S. G. Lyapin, et al., Phys. Rev. B 95, 094113 (2017).

    Article  ADS  Google Scholar 

  23. V. Sedov, K. Boldyrev, V. Krivobok, et al., Phys. Status Solidi A 214, 1700198 (2017).

    Article  ADS  Google Scholar 

  24. E. A. Ekimov, P. S. Sherin, V. S. Krivobok, et al., Phys. Rev. B 97, 045206 (2018).

    Article  ADS  Google Scholar 

  25. T. Karin, S. Dunham, and K.-M. Fu, Appl. Phys. Lett. 105, 053106 (2014).

    Article  ADS  Google Scholar 

  26. S. Meesala, Y.-I. Sohn, H. A. Atikian, et al., in Proceedings of the CLEO 2015 (Opt. Soc. America, 2015), p. FTh3B.4.

  27. S. Meesala, Y.-I. Sohn, H. A. Atikian, et al., Phys. Rev. Appl. 5, 034010 (2016).

    Article  ADS  Google Scholar 

  28. S. Meesala, Y.-I. Sohn, B. Pingault, et al., Phys. Rev. B 97, 205444 (2018).

    Article  ADS  Google Scholar 

  29. S. A. Grudinkin, N. A. Feoktistov, M. A. Baranov, et al., Nanotechnology 27, 395606 (2016).

    Article  Google Scholar 

  30. M. Kobayashi and Y. Nisida, Jpn. J. Appl. Phys. 32, 279 (1993).

    Article  Google Scholar 

  31. M. W. Doherty, V. V. Struzhkin, D. A. Simpson, et al., Phys. Rev. Lett. 112, 047601 (2014).

    Article  ADS  Google Scholar 

  32. B. Deng, R. Q. Zhang, and X. Q. Shi, Sci. Rep. 4, 5144 (2014).

    Article  ADS  Google Scholar 

  33. I. Il’echev, S. Lyapin, V. Davydov, et al., in Proceedings of the 57th MPhTI Conference on Problems of Fundamental and Applied Science in Modern Information Society, Nov. 24–29, Moscow,2014.

  34. A. Razgulov, S. Lyapin, A. Novikov, et al., in Proceedings of the 59th MPhTI Conference on Problems of Fundamental and Applied Science in Physics, Moscow, Nov. 21–26,2016.

  35. S. G. Lyapin, A. A. Razgulov, A. P. Novikov, et al., Nanosyst.: Phys., Chem., Math. 9, 67 (2018).

    Google Scholar 

  36. E. Londero, G. M. H. Thiering, L. Razinkovas, et al., Phys. Rev. B 98, 035306 (2018).

    Article  ADS  Google Scholar 

  37. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  38. A. Gali, M. Fyta, and E. Kaxiras, Phys. Rev. B 77, 155206 (2008).

    Article  ADS  Google Scholar 

  39. A. Gali, E. Janzén, P. Deák, et al., Phys. Rev. Lett. 103, 186404 (2009).

    Article  ADS  Google Scholar 

  40. A. Gali and J. R. Maze, Phys. Rev. B 88, 235205 (2013).

    Article  ADS  Google Scholar 

  41. A. Dietrich, K. D. Jahnke, J. M. Binder, et al., New J. Phys. 16, 113019 (2014).

    Article  Google Scholar 

  42. A. Alkauskas, B. B. Buckley, D. D. Awschalom, et al., New J. Phys. 16, 073026 (2014).

    Article  ADS  Google Scholar 

  43. U. F. S. D’Haenens-Johansson, A. M. Edmonds, B. L. Green, et al., Phys. Rev. B 84, 245208 (2011).

    Article  ADS  Google Scholar 

  44. V. Nadolinny, A. Komarovskikh, Y. Palyanov, et al., Phys. Status Solidi A 213, 2623 (2016).

    Article  ADS  Google Scholar 

  45. V. A. Nadolinny, A. Y. Komarovskikh, Y. N. Palyanov, et al., J. Struct. Chem. 57, 1041 (2016).

    Article  Google Scholar 

  46. U. F. S. D’Haenens-Johansson, A. M. Edmonds, M. E. Newton, et al., Phys. Rev. B 82, 155205 (2010).

    Article  ADS  Google Scholar 

  47. L. Gagliardi, D. G. Truhlar, G. Li Manni, et al., Acc. Chem. Res. 50 (2017).

  48. A. S. Zyubin, A. M. Mebel, M. Hayashi, et al., J. Comput. Chem. 30, 119 (2009).

    Article  Google Scholar 

  49. J. R. Maze, A. Gali, E. Togan, et al., New J. Phys. 13, 025025 (2011).

    Article  ADS  Google Scholar 

  50. A. Norambuena, S. A. Reyes, J. Mejía-Lopéz, et al., Phys. Rev. B 94, 134305 (2016).

    Article  ADS  Google Scholar 

  51. A. M. Zaitsev, Phys. Rev. B 61, 12909 (2000).

    Article  ADS  Google Scholar 

  52. S. H. Wei and A. Zunger, Phys. Rev. B 60, 5404 (1999).

    Article  ADS  Google Scholar 

  53. I. A. Trojan, M. I. Eremets, M. Y. Korolik, et al., Jpn. J. Appl. Phys. 32, 282 (1993).

    Article  Google Scholar 

  54. A. Onodera, M. Hasegawa, K. Furuno, et al., Phys. Rev. B 44, 12176 (1991).

    Article  ADS  Google Scholar 

  55. B. L. Green, S. Mottishaw, B. G. Breeze, et al., Phys. Rev. Lett. 119, 096402 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-12-00407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kondrin.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekimov, E.A., Lyapin, S.G., Razgulov, A.A. et al. Ab initio Calculation of Impurity–Vacancy Complexes in Diamond at High Pressure. J. Exp. Theor. Phys. 129, 855–862 (2019). https://doi.org/10.1134/S1063776119090097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119090097

Navigation