Skip to main content

Advertisement

Log in

Hydrogen passivation of vacancies in diamond: Electronic structure and stability from ab initio calculations

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Point defects in diamond such as vacancies act as a strong donor compensation center; therefore, remarkably reduce electron conductivity of diamond-based devices. Artificial synthesis methods of n-type diamond utilize the hydrogen-containing precursors enabling its diffusion into diamond crystal and subsequent formation of hydrogen-vacancy complexes. Here we employ spin-polarized, hybrid density functional theory calculations, in order to characterize the electronic properties and stability of hydrogen-passivated vacancies in diamond. We found strong thermodynamic preference for hydrogen passivation of four vacancy-related dangling bonds. An analysis of formation energy vs Fermi level diagrams indicate, that strong donor compensation effect associated with vacancies can be entirely neutralized by hydrogen incorporation. Thus, a careful control of hydrogen partial pressure in the growth process might be crucial to improve the electron conductivity of n-type diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D.J. Twitchen, A.J. Whitehead, S.E. Coe, G.A. Scarsbrook, Science 297, 1670 (2002).

    Article  CAS  Google Scholar 

  2. A.T. Collins, Properties and Growth of Diamond, (INSPEC, London, 1994).

  3. J.P. Goss, J. Phys. Condens. Matter. 15, R551 (2003).

  4. T.L. Estle, S. Estreicher, D.S. Marynick, Phys. Rev. Lett. 58, 1547 (1987).

    Article  CAS  Google Scholar 

  5. P. Briddon, R. Jones, G.M.S. Lister, J. Phys. C Solid State Phys. 21, L1027 (1988).

  6. N. Sahoo, S.K. Mishra, K.C. Mishra, A. Coker, T.P. Das, C.K. Mitra, L.C. Snyder, A. Glodeanu, Phys. Rev. Lett. 50, 913 (1983).

    Article  CAS  Google Scholar 

  7. D. Saada, J. Adler, R. Kalish, Phys. Rev. B. 61, 10711 (2000).

    Article  CAS  Google Scholar 

  8. A. Upadhyay, A.K. Singh, A. Kumar, Comput. Mater. Sci. 89, 257 (2014).

    Article  CAS  Google Scholar 

  9. S. Estreicher, A.K. Ray, J.L. Fry, D.S. Marynick, Phys. Rev. B. 34, 6071 (1986).

    Article  CAS  Google Scholar 

  10. H. Tachikawa, Chem. Phys. Lett. 513, 94 (2011).

    Article  CAS  Google Scholar 

  11. T. Claxton, A. Evans, M. Symons, J. Chem. Soc. Faraday Trans. 2. 82, 2031 (1986).

    Article  CAS  Google Scholar 

  12. C.P. Herrero, R. Ramírez, Phys. Rev. Lett. 99 (2007).

  13. T. Nishimatsu, H. Katayama-Yoshida, N. Orita, Phys. B Condens. Matter 302–303, 149 (2001).

  14. A.B. Anderson, L.N. Kostadinov, J.C. Angus , Phys. Rev. B. 67, 1 (2003).

    Google Scholar 

  15. C.P. Herrero, R. Ramírez, E.R. Hernández, Phys. Rev. B. 73, 245211 (2006).

    Article  Google Scholar 

  16. G. Thiering, A. Gali, Phys. Rev. B. 92, 165203 (2015).

    Article  Google Scholar 

  17. G. Thiering, A. Gali, Phys. Rev. B. 94, 125202 (2016).

    Article  Google Scholar 

  18. P.E. Blöchl, Phys. Rev. B. 50, 17953 (1994).

    Article  Google Scholar 

  19. G. Kresse, J. Furthmüller, Phys. Rev. B. 54, 11169 (1996).

    Article  CAS  Google Scholar 

  20. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  21. J. Heyd, G.E. Scuseria, M. Ernzerhof, Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).

    Google Scholar 

  22. S. Lany, A. Zunger, Phys. Rev. B 80, 085202 (2009).

    Article  Google Scholar 

  23. P. Deák, A. Gali, B. Aradi, T. Frauenheim, Phys. Status Solidi Basic Res. 248, 790 (2011).

    Article  Google Scholar 

  24. K. Czelej, P. Śpiewak, K.J. Kurzydłowski, MRS Adv. 1, 1093 (2016).

    Article  CAS  Google Scholar 

  25. P. Śpiewak, K.J. Kurzydłowski, Phys. Rev. B 88, 195204 (2013).

    Article  Google Scholar 

  26. P. Śpiewak, J. Vanhellemont, K.J. Kurzydłowski, J. Appl. Phys. 110, 063534 (2011).

    Article  Google Scholar 

  27. H. Monkhorst, J. Pack, Phys. Rev. B. 13, 5188 (1976).

    Article  Google Scholar 

  28. Y. Xiao, Z. Wei, Z. Wang, Comput. Math. with Appl. 56, 1001 (2008).

    Article  Google Scholar 

  29. S. Lany, A. Zunger, Phys. Rev. B. 78, 235104 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czelej, K., Śpiewak, P. Hydrogen passivation of vacancies in diamond: Electronic structure and stability from ab initio calculations. MRS Advances 2, 309–314 (2017). https://doi.org/10.1557/adv.2017.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.100

Navigation