Skip to main content
Log in

Analysis of Methods of Investigation of the Vibration–Rotation Spectrum of Monomers and Dimers of Sulphur Hexafluoride Isotopes

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The stability of the system of sulphur hexafluoride dimer SF6 under the action of external laser radiation has been estimated using ab initio quantum-chemical calculations of the vibration–rotation spectrum of SF6 monomers as well as homo- and heterodimers. It is noted that for simple CO molecule as an example, the most widely used method of calculations based on the Hessian matrix approach cannot serve as a reliable instrument in quantitative calculations of some molecular systems. As a potential analog, we have tested the algorithm for obtaining the vibration–rotation spectrum based on molecular dynamics data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. A. Beu and K. Takeuchi, J. Chem. Phys. 103, 6394 (1995).

    Article  ADS  Google Scholar 

  2. T. A. Beu, Z. Phys. D 31, 95 (1994).

    Article  ADS  Google Scholar 

  3. A. Boutin, J. B. Maillet, and A. H. Fuchs, J. Chem. Phys. 99, 9944 (1993).

    Article  ADS  Google Scholar 

  4. A. Boutin, B. Rousseau, and A. H. Fuchs, Chem. Phys. Lett. 218, 122 (1993).

    Article  ADS  Google Scholar 

  5. NIST Chemistry WebBook, Ed. by P. J. Linstrom and W. G. Mallard, NIST Standard Reference Database Number 69 (Natl. Inst. Standards Technol., 2018).

  6. F. Huisken and M. Stemmler, Chem. Phys. 132, 351 (1989).

    Article  Google Scholar 

  7. B. Heijmen, A. Bizzarri, S. Stolte, and J. Reuss, Chem. Phys. 132, 331 (1989).

    Article  Google Scholar 

  8. T. D. Kolomiitseva, V. A. Kondaurov, E. V. Sedelkova, and D. N. Shchepkin, Opt. Spectrosc. 92, 512 (2002).

    Article  ADS  Google Scholar 

  9. C. Brodbeck, J. Rossi, H. Strapelias, and J.-P. Bouanich, Chem. Phys. 54, 1 (1980).

    Article  Google Scholar 

  10. M. Thomas, M. Brehm, R. Fligg, et al., Phys. Chem. Chem. Phys. 15, 6608 (2013).

    Article  Google Scholar 

  11. M. Thomas, M. Brehmb, and B. Kirchner, Phys. Chem. Chem. Phys. 17, 3207 (2015).

    Article  Google Scholar 

  12. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

    Article  ADS  Google Scholar 

  13. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

    Article  ADS  Google Scholar 

  14. A. A. Granovsky, Firefly Version 8. http://classic.chem.msu.su/graw/firefly/index.html. Accessed 2017.

  15. J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, Comput. Mol. Sci. 4, 15 (2014).

    Article  Google Scholar 

  16. J. VandeVondele, M. Krack, F. Mohamed, et al., J. Comput. Phys. Commun. 167, 103 (2005).

    Article  ADS  Google Scholar 

  17. O. Schuett, P. Messmer, J. Hutter, and J. VandeVondele, in Electronic Structure Calculations on Graphics Processing Units (Wiley, New York, 2016), p. 173.

    Google Scholar 

  18. U. Borstnik, J. VandeVondele, V. Weber, and J. Hutter, Parallel Comput. 40 (5-–6), 47 (2014).

  19. S. Nose, Mol. Phys. 52, 255 (1984).

    Article  ADS  Google Scholar 

  20. J. Kolafa, J. Comp. Chem. 25, 335 (2004).

    Article  Google Scholar 

  21. J. VandeVondele and J. Hutter, J. Chem. Phys. 118, 4365 (2003).

    Article  ADS  Google Scholar 

  22. S. Nose, J. Chem. Phys. 81, 511 (1984).

    Article  ADS  Google Scholar 

  23. J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105 (2007).

    Article  ADS  Google Scholar 

  24. M. Krack, Theor. Chem. Acc. 114, 145 (2005).

    Article  Google Scholar 

  25. C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).

    Article  ADS  Google Scholar 

  26. S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).

    Article  ADS  Google Scholar 

  27. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comp. Chem. 32, 1456 (2011).

    Article  Google Scholar 

  28. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  29. M. Frigo and S. G. Johnson, Proc. IEEE 93, 216 (2005).

    Article  Google Scholar 

  30. G. Lippert, J. Hutter, and M. Parrinello, Mol. Phys. 92, 477 (1997).

    Article  ADS  Google Scholar 

  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  32. M. Brehm and B. Kirchner, J. Chem. Inf. Model. 51, 2007 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Bychkov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, M.E., Petrushevich, Y.V. & Starostin, A.N. Analysis of Methods of Investigation of the Vibration–Rotation Spectrum of Monomers and Dimers of Sulphur Hexafluoride Isotopes. J. Exp. Theor. Phys. 129, 210–216 (2019). https://doi.org/10.1134/S1063776119070057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119070057

Navigation