Skip to main content
Log in

Structures of vibrational absorption bands of the SiF4 molecule in a low-temperature nitrogen matrix

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We have studied the IR absorption spectra of diluted mixtures SiF4/M = 1/6000–1/10 000 in an N2 matrix at 11 K (for comparison, the spectra of SiF4 in Ar and Xe matrices have also been studied). It has been shown that, in solid nitrogen, the appearance of doublets is observed both in the range of the ν3 band of the SiF4 (28SiF, 29SiF4, and 30SiF4) isotopologues of the SiF4 molecule and in the range of the ν1 + ν4, ν2 + ν3, and ν1 + ν3 bands of 28SiF4, whereas, in the range of the 2ν3 band of 28SiF, a triplet appears. In order to analyze the influence of the matrix on the spectrum of free SiF4 molecules, we have used a model that makes it possible to successively calculate (i) the spectrum of SiF4 in terms of the model of local modes, (ii) the structure of a matrix composed by 864 N2 molecules + a rigid SiF4 molecule using the Monte Carlo method, and (iii) the interaction of matrix particles with local dipole moments in the approximation of dipole-induced dipole and dipole-quadrupole interactions. The model describes satisfactorily the low-frequency shift of bands in the nitrogen matrix. All obtained experimental and theoretical results are consistent with the assumption that two kinds of stable trapping centers of SiF4 molecules obeying the T d symmetry are realized in the nitrogen matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. Gough, D. G. Knight, and G. Scoles, Chem. Phys. Lett. 97(2), 155 (1983).

    Article  ADS  Google Scholar 

  2. X. J. Gu, D. J. Levander, B. Zhang, G. Scoles, and D. Zhuang, J. Chem. Phys. 93(7), 4898 (1990).

    Article  ADS  Google Scholar 

  3. R.-D. Urban and M. Takami, J. Chem. Phys. 102(8), 3017 (1995).

    Article  ADS  Google Scholar 

  4. R.-D. Urban and M. Takami, J. Chem. Phys. 103(21), 9132 (1995).

    Article  ADS  Google Scholar 

  5. T. D. Kolomiitsova, A. P. Burtsev, O. G. Peganov, and D. N. Shechepkin, Chem. Phys. 238, 315 (1998).

    Article  ADS  Google Scholar 

  6. T. D. Kolomiitsova, J. Chem. Phys. 121(3), 1504 (2004).

    Article  ADS  Google Scholar 

  7. H. Katsuki, T. Momose, and T. Shida, J. Chem. Phys. 116(19), 8411 (2002).

    Article  ADS  Google Scholar 

  8. T. D. Kolomiitsova, Z. Mielke, D. N. Shchepkin, and K. G. Tokhadze, Chem. Phys. Lett. 357, 181 (2002).

    Article  ADS  Google Scholar 

  9. S. K. Ignatov, T. D. Kolomiitsova, Z. Mielke, A. G. Razuvaev, D. N. Shchepkin, and K. G. Tokhadze, Chem. Phys. 324, 753 (2006).

    Article  ADS  Google Scholar 

  10. I. K. Tokhadze, T. D. Kolomiitsova, Z. Mielke, D. N. Shchepkin, and K. G. Tokhadze, J. Phys. Chem. A 113, 6334 (2009).

    Article  Google Scholar 

  11. T. D. Kolomiitsova, K. F. Savvateev, K. G. Tokhadze, D. N. Shchepkin, P. G. Sennikov, I. A. Vel’muzhova, and A. D. Bulanov, Opt. Spektrosk. 112(4), 615 (2012).

    Article  Google Scholar 

  12. Z. Mielke, K. G. Tokhadze, Z. Latajka, and E. Ratajczak, J. Phys. Chem. 100, 539 (1996).

    Article  Google Scholar 

  13. T. D. Kolomoitseva, S. M. Melikova, and G. P. Miroshnichenko, Opt. Spektrosk. 59, 1226 (1985).

    Google Scholar 

  14. I. K. Tokhadze, T. D. Kolomoitseva, K. G. Tokhadze, and D. N. Shchepkin, Opt. Spektrosk. 102(3), 446 (2007).

    Article  Google Scholar 

  15. M. L. Sage and J. A. Williams III, J. Chem. Phys. 78, 1348 (1983).

    Article  ADS  Google Scholar 

  16. M. V. Vol’kenshtein, M. A. El’yashevich, and B. I. Stepanov, Vibrations of Molecules (GTTI, Moscow, 1949) [in Russian].

    Google Scholar 

  17. S. Kelikh, Molecular Nonlinear Optics (Fizmatlit, Moscow, 1981) [in Russian].

    Google Scholar 

  18. A. P. Burtsev, Opt. Spectrosc. 98, 227 (2005).

    Article  ADS  Google Scholar 

  19. A. D. Buckingham, Trans. Faraday Soc. 56, 753 (1960).

    Article  Google Scholar 

  20. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Dover, New York, 1980; INLIT, Moscow, 1960).

    Google Scholar 

  21. M. P. Allen and D. J. Tildeslay, Computer Simulations of Liquids (Calendon Press, Oxford, 1994).

    Google Scholar 

  22. I. G. Kaplan, Introduction to the Theory of Molecular Interactions(Nauka, Moscow, 1982).

    Google Scholar 

  23. K. Kobashi and R. D. Etters, J. Chem. Phys. 82, 4341 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Tokhadze.

Additional information

Original Russian Text © I.K. Tokhadze, T.D. Kolomiitsova, K.G. Tokhadze, D.N. Shchepkin, 2014, published in Optika i Spektroskopiya, 2014, Vol. 117, No. 4, pp. 544–551.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokhadze, I.K., Kolomiitsova, T.D., Tokhadze, K.G. et al. Structures of vibrational absorption bands of the SiF4 molecule in a low-temperature nitrogen matrix. Opt. Spectrosc. 117, 525–533 (2014). https://doi.org/10.1134/S0030400X14100233

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X14100233

Keywords

Navigation