Skip to main content
Log in

Stationary Solutions of the Second-Order Equation for Fermions in Kerr–Newman Space-Time

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

When using the quantum mechanical second-order equation with the effective potential of the Kerr–Newman (KN) field for fermions, results were obtained that qualitatively differ from the results obtained when using the Dirac equation. In the presence of two event horizons, existence of degenerate stationary bound states was proved for charged and uncharged fermions with square integrable wavefunctions vanishing on event horizons. The fermions in such states are localized near the event horizons with the maxima of probability densities away from the event horizons by fractions of the Compton wavelength of fermions versus the values of coupling constants, the values of angular and orbital momenta j, l, and the value of the azimuthal quantum number mφ. In the case of extreme KN fields, absence of stationary bound states of fermions was shown for any values of coupling constants. Existence of discrete energy spectra was shown for charged and uncharged fermions in the field of KN naked singularity at definite values of physical parameters. The KN naked singularity poses no threat to cosmic censorship because of the regular behavior of the effective potentials of the KN field in quantum mechanics with the second-order equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Note that the authors [50] used Schrödinger-type equation (76) without the factor 2. In our notation, barrier \(K{\text{/}}{{(\rho - \rho _{{{\text{cl}}}}^{i})}^{2}}\) is impenetrable if \(K \geqslant {3 \mathord{\left/ {\vphantom {3 8}} \right. \kern-0em} 8}\).

REFERENCES

  1. S. Chandrasekhar, Proc. R. Soc. A 349, 571 (1976).

    Article  ADS  Google Scholar 

  2. S. Chandrasekhar, Proc. R. Soc. A 350, 565 (1976).

    Article  Google Scholar 

  3. D. Page, Phys. Rev. D 14, 1509 (1976).

    Article  ADS  Google Scholar 

  4. N. Toop, Preprint DAMTP (Cambridge Univ., Cambridge, 1976).

    Google Scholar 

  5. R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  6. E. T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, and R. Torrence, J. Math. Phys. 6, 918 (1965).

    Article  ADS  Google Scholar 

  7. E. G. Kalnins and W. Miller, J. Math. Phys. 33, 286 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Belgiorno and M. Martellini, Phys. Lett. B 453, 17 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Commun. Pure Appl. Math. 53, 902 (2000).

    Article  Google Scholar 

  10. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Commun. Pure Appl. Math. 53, 1201 (2000).

    Article  Google Scholar 

  11. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Commun. Math. Phys. 230, 201 (2002).

    Article  ADS  Google Scholar 

  12. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Adv. Theor. Math. Phys. 7, 25 (2003).

    Article  MathSciNet  Google Scholar 

  13. D. Batic, H. Schmid, and M. Winklmeier, J. Math. Phys. 46, 012504 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Batic and H. Schmid, Progr. Theor. Phys. 116, 517 (2006).

    Article  ADS  Google Scholar 

  15. M. Winklmeier and O. Yamada, J. Math. Phys. 47, 102503 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Batic and H. Schmid, Rev. Colomb. Mat. 42, 183 (2008).

    Google Scholar 

  17. M. Winklmeier and O. Yamada, J. Phys. A 42, 295204 (2009).

    Article  MathSciNet  Google Scholar 

  18. F. Belgiorno and S. L. Cacciatori, J. Math. Phys. 51, 033517 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  19. C. L. Pekeris, Phys. Rev. A 35, 14 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  20. C. L. Pekeris and K. Frankowski, Phys. Rev. A 39, 518 (1989).

    Article  ADS  Google Scholar 

  21. M. K.-H. Klissling and A. S. Tahvildar-Zadeh, J. Math. Phys. 56, 042303 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. S. Tahvildar-Zadeh, J. Math. Phys. 56, 042501 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  23. D. M. Zipoy, J. Math. Phys. 7, 1137 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  24. B. Carter, Phys. Rev. 174, 1559 (1968).

    Article  ADS  Google Scholar 

  25. P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 1958).

    Book  MATH  Google Scholar 

  26. Ya. B. Zeldovich and V. S. Popov, Sov. Phys. Usp. 14, 673 (1972).

    Article  ADS  Google Scholar 

  27. V. P. Neznamov and I. I. Safronov, J. Exp. Theor. Phys. 126, 647 (2018).

  28. V. P. Neznamov, I. I. Safronov, and V. E. Shemarulin, J. Exp. Theor. Phys. 127, 684 (2018).

  29. G. T. Horowitz and D. Marolf, Phys. Rev. D 52, 5670 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Pruefer, Math. Ann. 95, 499 (1926).

    Article  MathSciNet  Google Scholar 

  31. I. Ulehla and M. Havlíček, Appl. Math. 25, 358 (1980).

    Google Scholar 

  32. I. Ulehla, M. Havlíček, and J. Hořejší, Phys. Lett. A 82, 64 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  33. I. Ulehla, Rutherford Laboratory Preprint RL-82-095 (Rutherford Laboratory, 1982).

    Google Scholar 

  34. R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 (1967).

    Article  ADS  Google Scholar 

  35. L. Parker, Phys. Rev. D 22, 1922 (1980).

    Article  ADS  Google Scholar 

  36. M. V. Gorbatenko and V. P. Neznamov, Phys. Rev. D 82, 104056 (2010); arXiv:1007.4631 [gr-qc].

    Article  ADS  Google Scholar 

  37. M. V. Gorbatenko and V. P. Neznamov, Phys. Rev. D 83, 105002 (2011); arXiv:1102.4067 [gr-qc].

    Article  ADS  Google Scholar 

  38. M. V. Gorbatenko and V. P. Neznamov, J. Mod. Phys. 6, 303 (2015); arXiv:1107.0844 [gr-qc].

    Article  Google Scholar 

  39. V. P. Neznamov and V. E. Shemarulin, Grav. Cosmol. 24, 129 (2018). doi https://doi.org/10.1134/S0202289318020111

    Article  ADS  Google Scholar 

  40. M. V. Gorbatenko and V. P. Neznamov, Ann. Phys. (Berlin) 526, 491 (2014). doi https://doi.org/10.1002/andp.201400035

    Article  ADS  Google Scholar 

  41. I. M. Ternov, A. B. Gaina, and G. A. Chizhov, Sov. Phys. J. 23, 695 (1980).

    Article  Google Scholar 

  42. S. Dolan and J. Gair, Class. Quant. Grav. 26, 175020 (2009).

    Article  ADS  Google Scholar 

  43. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Nonrelativistic Theory (Fizmatlit, Moscow, 1963; Pergamon, Oxford, 1965).

  44. M. V. Gorbatenko, V. P. Neznamov, and E. Yu. Popov, Grav. Cosmol. 23, 245 (2017); arXiv:1511.05058 [gr-qc]. doi https://doi.org/10.1134/S0202289317030057

  45. V. I. Dokuchaev and Yu. N. Eroshenko, J. Exp. Theor. Phys. 117, 72 (2013).

    Article  ADS  Google Scholar 

  46. V. P. Neznamov, Theor. Math. Phys. 197, 1823 (2018).

  47. L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

    Article  ADS  Google Scholar 

  48. V. P. Neznamov, Part. Nucl. 37, 86 (2006).

    Article  Google Scholar 

  49. V. P. Neznamov and A. J. Silenko, J. Math. Phys. 50, 122302 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  50. J. Dittrich and P. Exner, J. Math. Phys. 26, 2000 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  51. H. Schmid, Math. Nachr. 274–275, 117 (2004); arXiv:math-ph/0207039v2.

  52. V. P. Neznamov and I. I. Safronov, Int. J. Mod. Phys. D 25, 1650091 (2016). doi https://doi.org/10.1142/S0218271816500917

    Article  ADS  Google Scholar 

  53. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer, Berlin, Heidelberg, 1991, 1996).

  54. R. Penrose, Riv. Nuovo Cim., Ser. I 1 (Num. Spec.), 252 (1969).

  55. R. S. Virbhadra, D. Narasimba, and S. M. Chitre, Astron. Astrophys. 337, 1 (1998).

    ADS  Google Scholar 

  56. K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  57. K. S. Virbhadra and C. R. Keeton, Phys. Rev. D 77, 124014 (2008).

    Article  ADS  Google Scholar 

  58. D. Dey, K. Bhattacharya, and N. Sarkar, Phys. Rev. D 88, 083532 (2013).

    Article  ADS  Google Scholar 

  59. P. S. Joshi, D. Malafaxina, and R. Narayan, Class. Quant. Grav. 31, 015002 (2014).

    Article  ADS  Google Scholar 

  60. A. Goel, R. Maity, P. Roy, and T. Sarkar, Phys. Rev. D 91, 104029 (2015); arXiv:1504.01302 [gr-qc].

Download references

ACKNOWLEDGMENTS

We express our gratitude to A.L. Novoselova for the essential technical assistance in preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Neznamov.

Additional information

The article was translated by the authors.

APPENDIX

APPENDIX

1.1 Effective Potentials of Gravitational and Electromagnetic Fields in Self-Conjugate Second-Order Equations

1. Kerr–Newman field:

In compliance with (68)–(71), we can obtain

$$\begin{gathered} \frac{3}{8}\frac{1}{{B_{{KN}}^{2}}}{{\left( {\frac{{d{{B}_{{KN}}}}}{{d\rho }}} \right)}^{2}} = \frac{3}{8}\left\{ {{{{\frac{{{{f}_{{KN}}}}}{{{{\omega }_{{KN}}} + \sqrt {{{f}_{{KN}}}} }}}}_{{_{{}}}}}} \right. \\ \times \left[ { - \frac{1}{{f_{{KN}}^{2}}}f_{{KN}}^{'}({{\omega }_{{KN}}} + \sqrt {{{f}_{{KN}}}} )} \right. \\ {{\left. {\left. { + \frac{1}{{{{f}_{{KN}}}}}\left( {\omega _{{KN}}^{'} + \frac{{f_{{KN}}^{'}}}{{2\sqrt {{{f}_{{KN}}}} }}} \right)} \right]} \right\}}^{2}}, \\ \end{gathered} $$
((A1))
$$\begin{gathered} - \frac{1}{4}\frac{1}{{{{B}_{{KN}}}}}\frac{{{{d}^{2}}{{B}_{{KN}}}}}{{d{{\rho }^{2}}}} = - \frac{1}{4}\frac{{{{f}_{{KN}}}}}{{{{\omega }_{{KN}}} + \sqrt {{{f}_{{KN}}}} }} \\ \times \left[ {\frac{2}{{f_{{KN}}^{3}}}{{{(f_{{KN}}^{'})}}^{2}}({{\omega }_{{KN}}} + \sqrt {{{f}_{{KN}}}} ) - \frac{1}{{f_{{KN}}^{2}}}} \right. \\ \, \times f_{{KN}}^{{''}}({{\omega }_{{KN}}} + \sqrt {{{f}_{{KN}}}} ) - \frac{{2f_{{KN}}^{'}}}{{f_{{KN}}^{2}}}\left( {\omega _{{KN}}^{'} + \frac{{f_{{KN}}^{'}}}{{2\sqrt {{{f}_{{KN}}}} }}} \right) \\ \left. { + \frac{1}{{{{f}_{{KN}}}}}\left( {\omega _{{KN}}^{{''}} + \frac{{f_{{KN}}^{{''}}}}{{2\sqrt {{{f}_{{KN}}}} }} - \frac{{{{{(f_{{KN}}^{'})}}^{2}}}}{{4f_{{KN}}^{{3/2}}}}} \right)} \right], \\ \end{gathered} $$
((A2))
$$\frac{1}{4}\frac{d}{{d\rho }}(A - D) = \frac{\lambda }{2}\left[ {\frac{1}{2}\frac{{f_{{KN}}^{'}}}{{\rho f_{{KN}}^{{3/2}}}} + \frac{1}{{{{\rho }^{2}}f_{{KN}}^{{1/2}}}}} \right],$$
((A3))
$$\begin{gathered} - \frac{1}{4}\frac{{A - D}}{B}\frac{{dB}}{{d\rho }} = \frac{\lambda }{{2\rho f_{{KN}}^{{1/2}}}}\left( { - \frac{{f_{{KN}}^{'}}}{{{{f}_{{KN}}}}}} \right. \\ \left. { + \frac{1}{{{{\omega }_{{KN}}} + \sqrt {{{f}_{{KN}}}} }}\left( {\omega _{{KN}}^{'} + \frac{{f_{{KN}}^{'}}}{{2\sqrt {{{f}_{{KN}}}} }}} \right)} \right), \\ \end{gathered} $$
((A4))
$$\frac{1}{8}{{(A - D)}^{2}} = \frac{{{{\lambda }^{2}}}}{{2{{f}_{{KN}}}{{\rho }^{2}}}},$$
((A5))
$$\frac{1}{2}BC = - \frac{1}{{2f_{{KN}}^{2}}}(\omega _{{KN}}^{2} - {{f}_{{KN}}}).$$
((A6))

In (A1)–(A6),

$${{f}_{{KN}}} = 1 - \frac{{2\alpha }}{\rho } + \frac{{\alpha _{a}^{2} + \alpha _{Q}^{2}}}{{{{\rho }^{2}}}},$$
$$f_{{KN}}^{'} \equiv \frac{{d{{f}_{{KN}}}}}{{d\rho }} = \frac{{2\alpha }}{{{{\rho }^{2}}}} - \frac{{2(\alpha _{a}^{2} + \alpha _{Q}^{2})}}{{{{\rho }^{3}}}},$$
$$f_{{KN}}^{{''}} \equiv \frac{{{{d}^{2}}{{f}_{{KN}}}}}{{d{{\rho }^{2}}}} = - \frac{{4\alpha }}{{{{\rho }^{3}}}} + \frac{{6(\alpha _{a}^{2} + \alpha _{Q}^{2})}}{{{{\rho }^{4}}}},$$
$${{\omega }_{{KN}}} = \varepsilon \left( {1 + \frac{{\alpha _{a}^{2}}}{{{{\rho }^{2}}}}} \right) - \frac{{{{\alpha }_{a}}{{m}_{\varphi }}}}{{{{\rho }^{2}}}} - \frac{{{{\alpha }_{{em}}}}}{\rho },$$
$$\omega _{{KN}}^{'} \equiv \frac{{d{{\omega }_{{KN}}}}}{{d\rho }} = - \frac{{2\varepsilon {{\alpha }_{a}}}}{{{{\rho }^{3}}}} + \frac{{2{{\alpha }_{a}}{{m}_{\varphi }}}}{{{{\rho }^{3}}}} + \frac{{{{\alpha }_{{em}}}}}{{{{\rho }^{2}}}},$$
$$\omega _{{KN}}^{{''}} \equiv \frac{{{{d}^{2}}{{\omega }_{{KN}}}}}{{d{{\rho }^{2}}}} = \frac{{6\varepsilon \alpha _{a}^{2}}}{{{{\rho }^{4}}}} - \frac{{6{{\alpha }_{a}}{{m}_{\varphi }}}}{{{{\rho }^{4}}}} - \frac{{2{{\alpha }_{{em}}}}}{{{{\rho }^{3}}}}.$$

The sum of expressions \({{E}_{{{\text{Schr}}}}} = \frac{1}{2}({{\varepsilon }^{2}} - 1)\) and (A1)–(A6) leads to the expression for effective potential \(U_{{{\text{eff}}}}^{F}\) (79). For the rest of the electromagnetic and gravitational fields examined in the paper, the structure of the expressions for the effective potentials does not change. Only the expressions for \(f,f ',f '',\omega ,\omega ',\omega ''\) change.

2. Kerr field \(({{\alpha }_{Q}} = 0,{{\alpha }_{{em}}} = 0)\):

$${{f}_{K}} = 1 - \frac{{2\alpha }}{\rho } + \frac{{\alpha _{a}^{2}}}{{{{\rho }^{2}}}},\quad f_{K}^{'} = \frac{{2\alpha }}{{{{\rho }^{2}}}} - \frac{{2\alpha _{a}^{2}}}{{{{\rho }^{3}}}},$$
$$f_{K}^{{''}} = - \frac{{4\alpha }}{{{{\rho }^{3}}}} + \frac{{6\alpha _{a}^{2}}}{{{{\rho }^{4}}}},\quad {{\omega }_{K}} = \varepsilon \left( {1 + \frac{{\alpha _{a}^{2}}}{{{{\rho }^{2}}}}} \right) - \frac{{{{\alpha }_{a}}{{m}_{\varphi }}}}{{{{\rho }^{2}}}},$$
$$\omega _{K}^{'} = - \frac{{2\varepsilon {{\alpha }_{a}}}}{{{{\rho }^{3}}}} + \frac{{2{{\alpha }_{a}}{{m}_{\varphi }}}}{{{{\rho }^{3}}}},\quad \omega _{K}^{{''}} = \frac{{6\varepsilon \alpha _{a}^{2}}}{{{{\rho }^{4}}}} - \frac{{6{{\alpha }_{a}}{{m}_{\varphi }}}}{{{{\rho }^{4}}}}.$$

3. Reissner–Nordström field (αa = 0):

$${{f}_{{RN}}} = 1 - \frac{{2\alpha }}{\rho } + \frac{{\alpha _{Q}^{2}}}{{{{\rho }^{2}}}},\quad f_{{RN}}^{'} = \frac{{2\alpha }}{{{{\rho }^{2}}}} - \frac{{2\alpha _{Q}^{2}}}{{{{\rho }^{3}}}},$$
$$f_{{RN}}^{{''}} = - \frac{{4\alpha }}{{{{\rho }^{3}}}} + \frac{{6\alpha _{Q}^{2}}}{{{{\rho }^{4}}}},\quad {{\omega }_{{RN}}} = \varepsilon - \frac{{{{\alpha }_{{em}}}}}{\rho },$$
$$\omega _{{RN}}^{'} = \frac{{{{\alpha }_{{em}}}}}{{{{\rho }^{2}}}},\quad \omega _{{RN}}^{{''}} = - \frac{{2{{\alpha }_{{em}}}}}{{{{\rho }^{3}}}},\quad \lambda = \kappa .$$

4. Schwarzschild field \(\left( {{{\alpha }_{Q}} = 0,{{\alpha }_{a}} = 0,{{\alpha }_{{em}}} = 0} \right)\):

$${{f}_{S}} = 1 - \frac{{2\alpha }}{p},\quad f_{S}^{'} = \frac{{2\alpha }}{{{{\rho }^{2}}}},\quad f_{S}^{{''}} = - \frac{{4\alpha }}{{{{\rho }^{3}}}},$$
$${{\omega }_{S}} = \varepsilon ,\quad \omega _{S}^{'} = \omega _{S}^{{''}} = 0,\quad \lambda = \kappa .$$

5. Coulomb field (the plane space-time, α = 0, \({{\alpha }_{Q}} = 0,{{\alpha }_{a}} = 0\)):

$${{f}_{C}} = 1,\quad f_{C}^{'} = f_{C}^{{''}} = 0,\quad {{\omega }_{C}} = \varepsilon - \frac{{{{\alpha }_{{em}}}}}{\rho },$$
$$\omega _{C}^{'} = \frac{{{{\alpha }_{{em}}}}}{{{{\rho }^{2}}}},\quad \omega _{C}^{{''}} = - \frac{{2{{\alpha }_{{em}}}}}{{{{\rho }^{3}}}},\quad \lambda = \kappa .$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neznamov, V.P., Safronov, I.I. & Shemarulin, V.Y. Stationary Solutions of the Second-Order Equation for Fermions in Kerr–Newman Space-Time. J. Exp. Theor. Phys. 128, 64–87 (2019). https://doi.org/10.1134/S1063776118120221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118120221

Navigation