Skip to main content
Log in

Stationary Solutions of Second-Order Equations for Point Fermions in the Schwarzschild Gravitational Field

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

When using a second-order Schrödinger-type equation with the effective potential of the Schwarzschild field, the existence of a stationary state of half-spin particles with energy E = 0 is proved. For each of the values of quantum numbers j, l, the physically meaningful energy E = 0 (the binding energy is \({{E}_{b}} = m{{c}^{2}}\)) is implemented at the value of the gravitational coupling constant \(\alpha \geqslant {{\alpha }_{{\min }}}\). The particles with E = 0 are, with the overwhelming probability, at some distance from the event horizon within the range from zero to several fractions of the Compton wavelength of a fermion depending on value of the gravitational coupling constants and the values of j, l. In this paper, similar solutions of the second-order equation are announced for bound states of fermions in the Reissner–Nordström, Kerr, Kerr–Newman fields. Atomic-type systems (the point sources of the Schwarzschild gravitational field) with fermions in bound states are proposed as particles of dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Clarendon, Oxford, 1958).

    Book  MATH  Google Scholar 

  2. Ya. B. Zeldovich and V. S. Popov, Sov. Phys. Usp. 14, 673 (1972).

    Article  ADS  Google Scholar 

  3. K. Schwarzschild, Sitzber. Deut. Akad. Wiss. Berlin, 189196 (1916).

    Google Scholar 

  4. N. Deruelle and R. Ruffini, Phys. Lett. B 52, 437 (1974).

    Article  ADS  Google Scholar 

  5. T. Damour, N. Deruelle, and R. Ruffini, Lett. Nuovo Cim. 15, 257 (1976).

    Article  ADS  Google Scholar 

  6. I. M. Ternov, V. P. Khalilov, G. A. Chizhov, and A. B. Gaina, Russ. Phys. J. 21, 1200 (1978).

    Google Scholar 

  7. A. B. Gaina and G. A. Chizhov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 120 (1980).

  8. I. M. Ternov, A. B. Gaina, and G. A. Chizhov, Sov. Phys. J. 23, 695 (1980).

    Article  Google Scholar 

  9. D. V. Galtsov, G. V. Pomerantseva, and G. A. Chizhov, Sov. Phys. J. 26, 743 (1983).

    Article  Google Scholar 

  10. I. M. Ternov and A. B. Gaina, Sov. Phys. J. 31, 157 (1988).

    Article  Google Scholar 

  11. A. B. Gaina and O. B. Zaslavskii, Class. Quant. Grav. 9, 667 (1992).

    Article  ADS  Google Scholar 

  12. A. B. Gaina and N. I. Ionescu-Pallas, Rom. J. Phys. 38, 729 (1993).

    Google Scholar 

  13. A. Lasenby, C. Doran, J. Pritchard, A. Caceres, and S. Dolan, Phys. Rev. D 72, 105014 (2005).

    Article  ADS  Google Scholar 

  14. D. Batic, M. Nowakowski, and K. Morgan, Universe 2, 31 (2016). doi 10.3390/universe2040031

    Article  ADS  Google Scholar 

  15. F. Finster, J. Smoller, and S.-T. Yau, J. Math. Phys. 41, 2173 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  16. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Comm. Pure Appl. Math. 53, 902 (2000).

    Article  MathSciNet  Google Scholar 

  17. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Comm. Pure Appl. Math. 53, 1201 (2000).

    Article  MathSciNet  Google Scholar 

  18. H. Reissner, Ann. Phys. 50, 106 (1916);

    Article  Google Scholar 

  19. C. Nordström, Proc. K. Akad. Wet. Amsterdam 20, 1238 (1918).

  20. R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  21. E. T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, and R. Torrence, J. Math. Phys. 6, 918 (1965).

    Article  ADS  Google Scholar 

  22. L. Parker, Phys. Rev. D 22, 1922 (1980).

    Article  ADS  Google Scholar 

  23. M. V. Gorbatenko and V. P. Neznamov, Phys. Rev. D 83, 105002 (2011); arxiv:1102.4067v1 [gr-qc].

    Article  ADS  Google Scholar 

  24. M. V. Gorbatenko and V. P. Neznamov, Phys. Rev. D 82, 104056 (2010); arxiv:1007.4631 [gr-qc].

    Article  ADS  Google Scholar 

  25. M. V. Gorbatenko and V. P. Neznamov, J. Mod. Phys. 6, 303 (2015); arxiv:1107.0844 [gr-qc].

    Article  Google Scholar 

  26. H. Pruefer, Math. Ann. 95, 499 (1926).

    Article  MathSciNet  Google Scholar 

  27. I. Ulehla and M. Havlíček, Appl. Math. 25, 358 (1980).

    Google Scholar 

  28. I. Ulehla, M. Havlíček, and J. Hořejší, Phys. Lett. A 82, 64 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Ulehla, Preprint RL-82-095 (Rutherford Laboratory, 1982).

    Google Scholar 

  30. D. R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 465 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  31. L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950);

    Article  ADS  Google Scholar 

  32. V. P. Neznamov, Part. Nucl. 37, 86 (2006);

    Article  Google Scholar 

  33. V. P. Neznamov and A. J. Silenko, J. Math. Phys. 50, 122301 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  34. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics. Nonrelativistic Theory (Fizmatgiz, Moscow, 1963; Pergamon, Oxford, 1965).

  35. M. V. Gorbatenko, V. P. Neznamov, and E. Y. Popov, Grav. Cosmol. 23, 245 (2017); arxiv:1511.05058(gr-qc). doi 10.1134/S020228931703005710.1134/S0202289317030057

  36. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer, Berlin, Heidelberg, 1996).

    MATH  Google Scholar 

  37. W. Pieper and W. Griener, Zs. Phys. 218, 327 (1969).

  38. M. V. Gorbatenko and V. P. Neznamov, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., No. 1, 62 (2018).

  39. A. S. Eddington, The Mathematical Theory of Relativity (Cambridge Univ. Press, Cambridge, 1924).

    MATH  Google Scholar 

  40. A. S. Eddington, Nature (London, U.K.) 113, 192 (1924).

    Article  ADS  Google Scholar 

  41. D. Finkelstein, Phys. Rev. 110, 965 (1958).

    Article  ADS  Google Scholar 

  42. P. Painleve, C. R. Acad. Sci. (Paris) 173, 677 (1921);

    Google Scholar 

  43. A. Gullstrand, Arkiv. Mat. Astron. Fys. 16, 1 (1922).

    Google Scholar 

  44. A. Gullstrand, Arkiv. Mat. Astron. Fys. 16, 1 (1922).

    Google Scholar 

  45. S. R. Dolan, Dissertation (Cavendish Laboratory, 2006).

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to V.E. Shemarulin for the useful discussions and to A.L. Novoselova for the substantial technical assistance in preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Neznamov.

Additional information

The article was translated by the authors.

Appendices

APPENDIX A

1.1 SELF-CONJUGATE SECOND-ORDER EQUATION FOR HALF-SPIN PARTICLES IN THE GRAVITATIONAL SCHWARZSCHILD FIELD

Dirac Eq. (6) with Hamiltonian (5) for the stationary states of \({{\psi }_{\eta }}(t,\rho ,\theta ,\varphi )\) = \({{e}^{{ - i\varepsilon t}}}{{\psi }_{\eta }}(\rho ,\theta ,\varphi )\) can be written as

$$(\varepsilon - {{H}_{\eta }}){{\psi }_{\eta }}\left( {\rho ,\theta ,\varphi } \right) = 0.$$
((А.1))

Let us multiply equality on the left (A.1) by the operator \((\varepsilon + {{H}_{\eta }})\):

$$(\varepsilon + {{H}_{\eta }})(\varepsilon - {{H}_{\eta }}){{\psi }_{\eta }}(\rho ,\theta ,\varphi ) = 0.$$
((А.2))

Taking into account (5), we obtain

$$\begin{gathered} \left\{ {{{\varepsilon }^{2}} - {{f}_{S}} + \left( {{{f}_{S}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)\left( {{{f}_{S}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)} \right. \\ \, + \frac{{{{f}_{S}}}}{{{{\rho }^{2}}}}\left[ {\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right)\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right) + \frac{1}{{{{{\sin }}^{2}}\theta }}\frac{{{{\partial }^{2}}}}{{\partial {{\varphi }^{2}}}}} \right. \\ \left. {\, + i{{\Sigma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{3} }}}\frac{\partial }{{\partial \theta }}\left( {\frac{1}{{\sin \theta }}} \right)\frac{\partial }{{\partial \varphi }}} \right] - i{{\gamma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{0} }}}{{\gamma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{3} }}}{{f}_{S}}\frac{d}{{d\rho }}(\sqrt {{{f}_{S}}} ) \\ \, + {{f}_{S}}\frac{d}{{d\rho }}\left( {\sqrt {{{f}_{S}}} \frac{1}{\rho }} \right)\left[ {i{{\Sigma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{3} }}}\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right)} \right. \\ \left. {\,\left. { - i{{\Sigma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{1} }}}\frac{1}{{\sin \theta }}\frac{\partial }{{\partial \varphi }}} \right]} \right\}{{\psi }_{\eta }}\left( {\rho ,\theta ,\varphi } \right) = 0. \\ \end{gathered} $$
((А.3))

In (А.3), as well as earlier in item 2.1, there was an equivalent substitution of matrices (9);

$${{\Sigma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{k} }}} = \left( {\begin{array}{*{20}{c}} {{{\sigma }^{k}}}&0 \\ 0&{{{\sigma }^{k}}} \end{array}} \right).$$

Dirac equations for upper and lower components of the bispinor

$${{\psi }_{\eta }}(\rho ,\theta ,\varphi ,t) = \left( \begin{gathered} U(\rho ,\theta ,\varphi ) \\ W(\rho ,\theta ,\varphi ) \\ \end{gathered} \right){{e}^{{ - i\varepsilon t}}}$$
((А.4))

have the form

$$\begin{gathered} (\varepsilon - \sqrt {{{f}_{S}}} )U = \left( { - i{{\sigma }^{3}}\left( {{{f}_{S}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)} \right. \\ \left. {\, - i{{\sigma }^{1}}\sqrt {{{f}_{S}}} \frac{1}{\rho }\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right) - i{{\sigma }^{2}}\sqrt {{{f}_{S}}} \frac{1}{\rho }\frac{1}{{{\text{sin}}\theta }}\frac{\partial }{{\partial \varphi }}} \right)W, \\ (\varepsilon + \sqrt {{{f}_{S}}} )W = \left( { - i{{\sigma }^{3}}\left( {{{f}_{S}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)} \right. \\ \left. {\, - i{{\sigma }^{1}}\sqrt {{{f}_{S}}} \frac{1}{\rho }\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right) - i{{\sigma }^{2}}\sqrt {{{f}_{S}}} \frac{1}{\rho }\frac{1}{{{\text{sin}}\theta }}\frac{\partial }{{\partial \varphi }}} \right)U. \\ \end{gathered} $$
((А.5))

As a result, taking into account (А.5), Eq. (А.3) can be written for one of the spinors \(U(\rho ,\theta ,\varphi )\) or \(W(\rho ,\theta ,\varphi )\). For the spinor \(U(\rho ,\theta ,\varphi )\), Eq. (А.3) has the view

$$\begin{gathered} \left\{ {{{\varepsilon }^{2}} - {{f}_{S}} + {{{\left( {{{f}_{S}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)}}^{2}}} \right. \\ \, + \frac{{{{f}_{S}}}}{{{{\rho }^{2}}}}\left[ {{{{\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right)}}^{2}} + \frac{1}{{{{{\sin }}^{2}}\theta }}\frac{{{{\partial }^{2}}}}{{\partial {{\varphi }^{2}}}}} \right. \\ \end{gathered} $$
$$\begin{gathered} \,\left. { + i{{\sigma }^{3}}\frac{\partial }{{\partial \theta }}\left( {\frac{1}{{\sin \theta }}} \right)\frac{\partial }{{\partial \varphi }}} \right] + {{f}_{S}}\frac{d}{{d\rho }}\left( {\sqrt {{{f}_{S}}} \frac{1}{\rho }} \right) \\ \, \times \left[ {i{{\sigma }^{2}}\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right) - i{{\sigma }^{1}}\frac{1}{{\sin \theta }}\frac{\partial }{{\partial \varphi }}} \right] \\ \, + {{f}_{S}}\frac{d}{{d\rho }}(\sqrt {{{f}_{S}}} )\frac{1}{{\varepsilon + \sqrt {{{f}_{S}}} }}\left[ { - {{f}_{S}}\frac{\partial }{{\partial \rho }} - \frac{1}{\rho } + \frac{\alpha }{{{{\rho }^{2}}}}} \right. \\ \end{gathered} $$
((А.6))
$$\begin{gathered} \, - i{{\sigma }^{2}}\sqrt {{{f}_{S}}} \frac{1}{\rho }\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right) \\ \,\left. {\left. { + i{{\sigma }^{1}}\sqrt {{{f}_{S}}} \frac{1}{\rho }\frac{1}{{\sin \theta }}\frac{\partial }{{\partial \varphi }}} \right]} \right\}U(\rho ,\theta ,\varphi ) = 0. \\ \end{gathered} $$

Then, the variables can be separated. From representation (7) it follows that

$$U(r,\theta ,\varphi ) = F(\rho )\xi (\theta ){{e}^{{i{{m}_{\varphi }}\varphi }}}.$$
((А.7))

Using Brill–Wheeler Eq. (8) and its squared representation [41]

$$\begin{gathered} \left[ {{{{\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right)}}^{2}} + \frac{1}{{{{{\sin }}^{2}}\theta }}\frac{{{{\partial }^{2}}}}{{\partial {{\varphi }^{2}}}}} \right. \\ \left. {\, + i{{\sigma }^{3}}\frac{\partial }{{\partial \theta }}\left( {\frac{1}{{\sin \theta }}} \right)\frac{\partial }{{\partial \varphi }}} \right]\xi (\theta ){{e}^{{i{{m}_{\varphi }}\varphi }}} = - {{\kappa }^{2}}\xi (\theta ){{e}^{{i{{m}_{\varphi }}\varphi }}}, \\ \end{gathered} $$
((А.8))

we can derive the second-order equation for the radial function F(ρ)

$$\begin{gathered} \left\{ {{{\varepsilon }^{2}} - {{f}_{S}} + {{{\left( {{{f}_{S}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)}}^{2}} - \frac{{{{f}_{S}}{{\kappa }^{2}}}}{{{{\rho }^{2}}}}} \right. \\ \, + {{f}_{S}}\kappa \frac{d}{{d\rho }}\left( {\sqrt {{{f}_{S}}} \frac{1}{\rho }} \right) - {{f}_{S}}\frac{d}{{d\rho }}(\sqrt {{{f}_{S}}} )\frac{1}{{\varepsilon + \sqrt {{{f}_{S}}} }}\frac{{\kappa \sqrt {{{f}_{S}}} }}{\rho } \\ \left. {\, - {{f}_{S}}\frac{d}{{d\rho }}(\sqrt {{{f}_{S}}} )\frac{1}{{\varepsilon \, + \sqrt {{{f}_{S}}} }}\left( {{{f}_{S}}\frac{\partial }{{\partial \rho }}\, + \,\frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)} \right\}F(\rho )\, = \,0. \\ \end{gathered} $$
((A.9))

In Eq. (А.9), the third and the last summands are not self-conjugate. For self-conjugacy (А.9), let us perform nonunitary similarity transformation

$$F(\rho ) = g_{F}^{{ - 1}}(\rho ){{\psi }_{F}}(\rho ).$$
((А.10))

If in Eq. (12), we denote

$$A(\rho ) = - \frac{1}{{{{f}_{S}}}}\left( {\frac{{1 + \kappa \sqrt {{{f}_{S}}} }}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right),$$
((А.11))
$$B(\rho ) = \frac{1}{{{{f}_{S}}}}(\varepsilon + \sqrt {{{f}_{S}}} ),$$
((А.12))
$$C(\rho ) = - \frac{1}{{{{f}_{S}}}}(\varepsilon - \sqrt {{{f}_{S}}} ),$$
((А.13))
$$D(\rho ) = - \frac{1}{{{{f}_{S}}}}\left( {\frac{{1 - \kappa \sqrt {{{f}_{S}}} }}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)$$
((А.14))

and, besides, introduce denotations of

$${{A}_{F}}(\rho ) = - \frac{1}{B}\frac{{dB}}{{d\rho }} - A - D,$$
((А.15))
$${{A}_{G}}(\rho ) = - \frac{1}{C}\frac{{dC}}{{d\rho }} - A - D,$$
((А.16))

then, the desired transformation is

$${{g}_{F}}(\rho ) = \exp \left( {\frac{1}{2}\int {{{A}_{F}}} (\rho ')d\rho '} \right).$$
((А.17))

As a result, if we write Eq. (А.9) as

$$\hat {M}F(\rho ) = 0,$$

then the transformed self-conjugate equation has the form

$${{g}_{F}}(\rho )\hat {M}g_{F}^{{ - 1}}{{\psi }_{F}}(\rho ) = 0.$$
((А.18))

Equation (А.18) can be written as the Schrödinger-type second-order equation with the effective potential \(U_{{{\text{eff}}}}^{F}(\rho )\)

$$\frac{{{{d}^{2}}{{\psi }_{F}}}}{{d{{\rho }^{2}}}} + 2({{E}_{{{\text{Schr}}}}} - U_{{{\text{eff}}}}^{F}){{\psi }_{F}} = 0,$$
((А.19))

where

$${{E}_{{{\text{Schr}}}}} = \frac{1}{2}({{\varepsilon }^{2}} - 1),$$
((А.20))
$$\begin{gathered} U_{{{\text{eff}}}}^{F} = - \frac{1}{4}\frac{1}{B}\frac{{{{d}^{2}}B}}{{d{{\rho }^{2}}}} + \frac{3}{8}{{\left( {\frac{1}{B}\frac{{dB}}{{d\rho }}} \right)}^{2}} \\ \, - \frac{1}{4}\left( {A - D} \right)\frac{1}{B}\frac{{dB}}{{d\rho }} + \frac{1}{4}\frac{d}{{d\rho }}\left( {A - D} \right) \\ + \frac{1}{8}{{\left( {A - D} \right)}^{2}} + \frac{1}{2}BC + {{E}_{{{\text{Schr}}}}}. \\ \end{gathered} $$
((А.21))

In Eq. (А.19), summand \({{E}_{{{\text{Schr}}}}}\) (А.20) is selected and simultaneously added to (А.21). On the one hand, it is done for Eq. (А.19) to have the form of the Schrödinger-type equation and, on the other hand, to ensure classical asymptotics of the effective potential at \(\rho \to \infty \).

For the lower spinor \(W(\rho ,\theta ,\varphi )\) with the radial function G(ρ), the appropriate equations have the form

$$G(\rho ) = g_{G}^{{ - 1}}{{\psi }_{G}}(\rho ),$$
((А.22))
$${{g}_{G}}(\rho ) = \exp \left( {\frac{1}{2}\int {{{A}_{G}}} (\rho ')d\rho '} \right),$$
((А.23))
$$\frac{{{{d}^{2}}{{\psi }_{G}}}}{{d{{\rho }^{2}}}} + 2({{E}_{{{\text{Schr}}}}} - U_{{{\text{eff}}}}^{G}){{\psi }_{G}} = 0,$$
((А.24))
$$\begin{gathered} U_{{{\text{eff}}}}^{G} = - \frac{1}{4}\frac{1}{C}\frac{{{{d}^{2}}C}}{{d{{\rho }^{2}}}} + \frac{3}{8}{{\left( {\frac{1}{C}\frac{{dC}}{{d\rho }}} \right)}^{2}} \\ \, + \frac{1}{4}\frac{{\left( {A - D} \right)}}{C}\frac{{dC}}{{d\rho }} - \frac{1}{4}\frac{d}{{d\rho }}\left( {A - D} \right) \\ \, + \frac{1}{8}{{\left( {A - D} \right)}^{2}} + \frac{1}{2}BC + {{E}_{{{\text{Schr}}}}}. \\ \end{gathered} $$
((А.25))

APPENDIX B

1.1 EFFECTIVE POTENTIAL OF THE SCHWARZSCHILD FIELD IN THE SCHRÖDINGER-TYPE EQUATION

In compliance with (А.11)–(А.14), (А.21), we can obtain

$$\begin{gathered} \frac{3}{8}\frac{1}{{{{B}^{2}}}}{{\left( {\frac{{dB}}{{d\rho }}} \right)}^{2}} \\ = \frac{3}{8}{{\left( {\frac{{2\alpha }}{{\rho (\rho - 2\alpha )}} - \frac{\alpha }{{\varepsilon \rho {{{(\rho (\rho - 2\alpha ))}}^{{1/2}}} + \rho (\rho - 2\alpha )}}} \right)}^{2}}, \\ \end{gathered} $$
((B.1))
$$\begin{gathered} - \frac{1}{4}\frac{1}{B}\frac{{{{d}^{2}}B}}{{d{{\rho }^{2}}}} = - \frac{{2{{\alpha }^{2}}}}{{{{\rho }^{2}}{{{(\rho - 2\alpha )}}^{2}}}} - \frac{\alpha }{{{{\rho }^{2}}(\rho - 2\alpha )}} \\ + \frac{5}{4}\frac{{{{\alpha }^{2}}}}{{\varepsilon {{\rho }^{{5/2}}}{{{(\rho - 2\alpha )}}^{{3/2}}} + {{\rho }^{2}}{{{(\rho - 2\alpha )}}^{2}}}} \\ + \frac{\alpha }{{2[\varepsilon {{\rho }^{{5/2}}}{{{(\rho - 2\alpha )}}^{{1/2}}} + {{\rho }^{2}}(\rho - 2\alpha )]}}, \\ \end{gathered} $$
((B.2))
$$\frac{1}{4}\frac{d}{{d\rho }}\left( {A - D} \right) = \frac{{\kappa (\rho - \alpha )}}{{2{{\rho }^{{3/2}}}{{{(\rho - 2\alpha )}}^{{3/2}}}}},$$
((B.3))
$$\begin{gathered} - \frac{1}{4}\frac{{\left( {A - D} \right)}}{B}\frac{{dB}}{{d\rho }} = - \frac{{\alpha \kappa }}{{{{\rho }^{{3/2}}}{{{(\rho - 2\alpha )}}^{{3/2}}}}} \\ + \frac{{\alpha \kappa }}{{2[\varepsilon {{\rho }^{2}}(\rho - 2\alpha ) + {{\rho }^{{3/2}}}{{{(\rho - 2\alpha )}}^{{3/2}}}]}}, \\ \end{gathered} $$
((B.4))
$$\frac{1}{8}{{\left( {A - D} \right)}^{2}} = \frac{{{{\kappa }^{2}}}}{{2\rho \left( {\rho - 2\alpha } \right)}},$$
((B.5))
$$\frac{1}{2}BC = - \frac{1}{2}\frac{{{{\rho }^{2}}{{\varepsilon }^{2}}}}{{{{{\left( {\rho - 2\alpha } \right)}}^{2}}}} + \frac{1}{2}\frac{\rho }{{\rho - 2\alpha }}.$$
((B.6))

The sum of expressions of \({{E}_{{{\text{Schr}}}}}\) and (B.1)–(B.6), leads to the desired expression for the effective potential \(U_{{{\text{eff}}}}^{F}\).

The asymptotics is

$$U_{{{\text{eff}}}}^{F}(\varepsilon = 0){{{\text{|}}}_{{\rho \to 2\alpha }}} = - \frac{3}{{32{{{(\rho - 2\alpha )}}^{2}}}}.$$
((B.7))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neznamov, V.P., Safronov, I.I. Stationary Solutions of Second-Order Equations for Point Fermions in the Schwarzschild Gravitational Field. J. Exp. Theor. Phys. 127, 647–658 (2018). https://doi.org/10.1134/S1063776118100059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118100059

Keywords

Navigation