Skip to main content
Log in

Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Gao, Y. X. Yang, Y. Q. Xiong, and P. Chen, J. Phys. D 47, 045003 (2014).

    Article  ADS  Google Scholar 

  2. H. Yang, S. H. Yang, and S. S. Parkin, Nano Lett. 8, 340 (2008).

    Article  ADS  Google Scholar 

  3. H. Yang, S. H. Yang, G. Ilnicki, et al., Phys. Rev. B 83, 174437 (2011).

    Article  ADS  Google Scholar 

  4. D. Ciudad, Z.-C. Wen, A. T. Hindmarch, et al., Phys. Rev. B 85, 214408 (2012).

    Article  ADS  Google Scholar 

  5. L. Ye, C. Lee, C. Chiou, et al., IEEE Trans. Magn. 50, 4401203 (2014).

    Article  Google Scholar 

  6. S. Takahashi and S. Maekawa, Phys. Rev. Lett. 80, 1758 (1998).

    Article  ADS  Google Scholar 

  7. A. García-García, A. Vovk, J. A. Pardo, et al., J. Appl. Phys. 107, 033704 (2010).

    Article  ADS  Google Scholar 

  8. T. V. Pham, S. Miwa, D. Bang et al., Solid State Commun. 183, 18 (2014).

    Article  ADS  Google Scholar 

  9. A. N. Useinov, J. Kosel, N. K. Useinov, and L. R. Tagirov, Phys. Rev. B 84, 085424 (2011).

    Article  ADS  Google Scholar 

  10. N. Kh. Useinov, Phys. Solid State 55, 659 (2013).

    Article  ADS  Google Scholar 

  11. N. Kh. Useinov, D. A. Petukhov, and L. R. Tagirov, J. Magn. Magn. Mater. 373, 27 (2015).

    Article  ADS  Google Scholar 

  12. L. R. Tagirov, B. P. Vodopyanov, and K. B. Efetov, Phys. Rev. B 63, 104428 (2001).

    Article  ADS  Google Scholar 

  13. A. N. Useinov, R. G. Deminov, L. R. Tagirov, and G. Pan, J. Phys.: Condens. Matter 19, 196215 (2007).

    ADS  Google Scholar 

  14. N. Kh. Useinov, Theor. Math. Phys. 183, 705 (2015).

    Article  MathSciNet  Google Scholar 

  15. A. N. Useinov, R. G. Deminov, N. Kh. Useinov, and L. R. Tagirov, Phys. Status Solidi B 247, 1797 (2010).

    Article  ADS  Google Scholar 

  16. Principles of Nanoelectronics. The School-Book, Ed. by V. P. Dragunov, I. G. Neizvestnyi, and V. A. Gridchin (Univ. Kniga, Logos, Fizmatkniga, Moscow, 2006), p. 496 [in Russian].

    Google Scholar 

  17. R. Kubo, A. Kawabata, and S. Kobayashi, Ann. Rev. Mater. Sci. 14, 49 (1984).

    Article  ADS  Google Scholar 

  18. S. K. Ghosh, Assam Univ. J. Sci. Technol.: Phys. Sci. Technol. 7, 114 (2011).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, Oxford, 1991), Chap. 6, p. 133.

    Google Scholar 

  20. N. Kh. Useinov and L. R. Tagirov, Phys. Proc. 75, 995 (2015).

    Article  ADS  Google Scholar 

  21. F. Himpsel, K. Altmann, G. Mankey, et al., J. Magn. Magn. Mater. 200, 456 (1999).

    Article  ADS  Google Scholar 

  22. J. Faure-Vincent, C. Tiusan, C. Bellouard, et al., Phys. Rev. Lett. 89, 107206 (2002).

    Article  ADS  Google Scholar 

  23. L. Tagirov and N. Garcia, Superlatt. Microstruct. 41, 152 (2007).

    Article  ADS  Google Scholar 

  24. G. Tatara, Y.-W. Zhao, M. Munoz, and N. Garcia, Phys. Rev. Lett. 83, 2030 (1999).

    Article  ADS  Google Scholar 

  25. L. R. Tagirov, B. P. Vodopyanov, and B. M. Garipov, J. Magn. Magn. Mater. 258, 61 (2003).

    Article  ADS  Google Scholar 

  26. J. Martinek, J. Barnaś, A. Fert, et al., J. Appl. Phys. 93, 8265 (2003).

    Article  ADS  Google Scholar 

  27. A. Manchon, N. Ryzhanova, N. Strelkov, et al., J. Phys.: Condens. Matter 19, 165212 (2007).

    ADS  Google Scholar 

  28. I. Theodonis, A. Kalitsov, and N. Kioussis, Phys. Rev. B 76, 224406 (2007).

    Article  ADS  Google Scholar 

  29. X. Chen, Q.-R. Zheng, and G. Su, Phys. Rev. B 78, 104410 (2008).

    Article  ADS  Google Scholar 

  30. I. Theodonis, N. Kioussis, A. Kalitsov, et al., Phys. Rev. Lett. 97, 237205 (2006).

    Article  ADS  Google Scholar 

  31. A. Kalitsov, W. Silvestre, M. Chshiev, and J. P. Velev, Phys. Rev. B 88, 104430 (2013).

    Article  ADS  Google Scholar 

  32. Z. Diao, A. Panchula, Y. Ding, et al., Appl. Phys. Lett. 90, 132508 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Useinov.

Additional information

Original Russian Text © A.M. Esmaeili, A.N. Useinov, N.Kh. Useinov, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 1, pp. 137–149.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, A.M., Useinov, A.N. & Useinov, N.K. Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions. J. Exp. Theor. Phys. 126, 115–125 (2018). https://doi.org/10.1134/S1063776118010168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118010168

Navigation