Skip to main content
Log in

Peculiarities of the Self-Action of Inclined Wave Beams Incident on a Discrete System of Optical Fibers

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on a discrete nonlinear Schrödinger equation (DNSE), we studied analytically and numerically the peculiarities of the self-action of one-dimensional quasi-optic wave beams injected into a spatially inhomogeneous medium consisting of a set of equidistant mutually coupled optical fibers. A variational approach allowing the prediction of the global evolution of localized fields with the initially plane phase front was developed. The self-consistent equations are obtained for the main parameters of such beams (the position of the center of mass, the effective width, and linear and quadratic phase-front corrections) in the aberrationless approximation. The case of radiation incident on a periodic system of nonlinear optical fibers at an angle to the axis oriented along them is analyzed in detail. It is shown that for the radiation power exceeding a critical value, the self-focusing of the wave field is observed, which is accompanied by the shift of the intensity maximum followed by the concentration of the main part of radiation only in one of the structural elements of the array under study. In this case, the beams propagate along paths considerably different from linear and the direction of their propagation changes compared to the initial direction. Asymptotic expressions are found that allow us to estimate the self-focusing length and to determine quite accurately the final position of a point with the maximum field amplitude after radiation trapping a channel. The results of the qualitative study of the possible self-channeling regimes for wave beams in a system of weakly coupled optical fibers in the aberrationless approximation are compared with the results of direct numerical simulations within the DNSE framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge Univ. Press, Cambridge, 2000; Fizmatlit, Moscow, 2005).

    MATH  Google Scholar 

  2. A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures (Oxford Univ. Press, 1999; Fizmatlit, Moscow, 2007).

    Google Scholar 

  3. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, CA, 2003; Fizmatgiz, Moscow, 2005).

    Google Scholar 

  4. P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives (Springer, Berlin, 2009).

    Book  MATH  Google Scholar 

  5. Nonlinearities in Periodic Structures and Metamaterials, Ed. by C. Denz, S. Flach, and Yu. S. Kivshar (Springer, Heidelberg, 2010).

    Google Scholar 

  6. P. G. Kevrekidis, K. O. Rasmussen, and A. R. Bishop, Int. J. Mod. Phys. B 15, 2833 (2001).

    Article  ADS  Google Scholar 

  7. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Ya. Silberberg, Phys. Rep. 463, 1 (2008).

    Article  ADS  Google Scholar 

  8. Ya. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys. 83, 247 (2011); Rev. Mod. Phys. 83, 405(E) (2011).

    Article  ADS  Google Scholar 

  9. O. M. Braun and Yu. S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer, Berlin, 2004; Fizmatlit, Moscow, 2008).

    Book  MATH  Google Scholar 

  10. A. B. Aceves, C. de Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, Phys. Rev. E 53, 1172 (1996).

    Article  ADS  Google Scholar 

  11. D. J. Kaup, Math. Comput. Simul. 69, 322 (2005).

    Article  Google Scholar 

  12. D. J. Kaup and T. K. Vogel, Phys. Lett. A 362, 289 (2007).

    Article  ADS  Google Scholar 

  13. J. Cuevas, G. James, P. G. Kevrekidis, B. A. Malomed, and B. Sánchez-Rey, J. Nonlin. Math. Phys. 15, 124 (2008).

    Article  Google Scholar 

  14. J. Cuevas, P. G. Kevrekidis, D. J. Frantzeskakis, and B. A. Malomed, Physica D 238, 67 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Chong, R. Carretero-González, B. A. Malomed, and P. G. Kevrekidis, Physica D 238, 126 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Chong, R. Carretero-González, B. A. Malomed, and P. G. Kevrekidis, Physica D 240, 1205 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Susanto and P. C. Matthews, Phys. Rev. E 83, 035201(R) (2011).

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Chong, D. E. Pelinovsky, and G. Schneider, Physica D 241, 115 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Syafwan, H. Susanto, S. M. Cox, and B. A. Malomed, J. Phys. A: Math. Theor. 45, 075207 (2012).

    Article  ADS  Google Scholar 

  20. A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001).

    Article  ADS  Google Scholar 

  21. A. A. Balakin, A. G. Litvak, V. A. Mironov, and S. A. Skobelev, Phys. Rev. A 94, 063806 (2016).

    Article  ADS  Google Scholar 

  22. U. Al Khawaja, S. M. Al-Marzougb, H. Bahloulib, Commun. Nonlin. Sci. Numer. Simul. 46, 74 (2017).

    Article  Google Scholar 

  23. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rep. 518, 1 (2012).

    Article  ADS  Google Scholar 

  24. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).

    Article  ADS  Google Scholar 

  25. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).

    Article  ADS  Google Scholar 

  26. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83, 2726 (1999).

    Article  ADS  Google Scholar 

  27. H. S. Eisenberg, R. Morandotti, Y. Silberberg, J. M. Arnold, G. Pennelli, and J. S. Aitchison, J. Opt. Soc. Am. B 19, 2938 (2002).

    Article  ADS  Google Scholar 

  28. U. Peschel, R. Morandotti, J. M. Arnold, J. S. Aitchison, H. S. Eisenberg, Y. Silberberg, Th. Pertsch, and F. Lederer, J. Opt. Soc. Am. B 19, 2637 (2002).

    Article  ADS  Google Scholar 

  29. D. Cheskis, S. Bar-Ad, R. Morandotti, J. S. Aitchison, H. S. Eisenberg, Y. Silberberg, and D. Ross, Phys. Rev. Lett. 91, 223901 (2003).

    Article  ADS  Google Scholar 

  30. O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).

    Article  ADS  Google Scholar 

  31. Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, and M. K. Oberthaler, Phys. Rev. Lett. 94, 020403 (2005).

    Article  ADS  Google Scholar 

  32. R. Franzosi, R. Livi, G. Oppo, and A. Politi, Nonlinearity 24, R89 (2011).

    Article  Google Scholar 

  33. H. Hennig and R. Fleischmann, Phys. Rev. A 87, 033605 (2013).

    Article  ADS  Google Scholar 

  34. H. Hennig, T. Neff, and R. Fleischmann, Phys. Rev. E 93, 032219 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  35. A. A. Vakhnenko and Yu. B. Gaididei, Sov. J. Theor. Math. Phys. 68, 873 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Skobelev.

Additional information

Original Russian Text © A.G. Litvak, V.A. Mironov, S.A. Skobelev, L.A. Smirnov, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 1, pp. 28–44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvak, A.G., Mironov, V.A., Skobelev, S.A. et al. Peculiarities of the Self-Action of Inclined Wave Beams Incident on a Discrete System of Optical Fibers. J. Exp. Theor. Phys. 126, 21–34 (2018). https://doi.org/10.1134/S1063776118010053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118010053

Navigation