Skip to main content
Log in

The Evolution of High-Intensity Light Pulses in a Nonlinear Medium Taking into Account the Raman Effect

  • NONLINEAR OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The evolution of high-intensity light pulses in nonlinear single-mode optical waveguides, the dynamics of light in which is described by the nonlinear Schrödinger equation with a Raman term taking into account stimulated Raman self-scattering of light, is investigated. It is demonstrated that dispersive shock waves the behavior of which is much more diverse than in the case of ordinary nonlinear Schrödinger equation with a Kerr nonlinearity are formed in the process of evolution of pulses of substantially high intensity. The Whitham equations describing slow evolution of the dispersive shock waves are derived under the assumption of the Raman term being small. It is demonstrated that the dispersive shock waves can asymptotically assume a stationary profile when the Raman effect is taken into account. Analytical theory is corroborated by numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett. 10, 457 (1985). https://doi.org/10.1364/OL.10.000457

    Article  ADS  Google Scholar 

  2. J. E. Rothenberg and D. Grischkowsky, Phys. Rev. Lett. 62, 531 (1989). https://doi.org/10.1103/PhysRevLett.62.531

    Article  ADS  Google Scholar 

  3. T. B. Benjamin and M. J. Lighthill, Proc. R. Soc. London, Ser. A 224, 448 (1954). https://doi.org/10.1098/rspa.1954.0172

    Article  ADS  Google Scholar 

  4. R. J. Taylor, D. R. Baker, and H. Ikezi, Phys. Rev. Lett. 24, 206 (1970). https://doi.org/10.1103/PhysRevLett.24.206

    Article  ADS  Google Scholar 

  5. R. Z. Sagdeev, in Problems of Plasma Theory, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964), No. 4 [in Russian].

  6. A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 38, 291 (1973).

    ADS  Google Scholar 

  7. G. B. Whitham, Proc. R. Soc. London, Ser. A 283, 238 (1965). https://doi.org/10.1098/rspa.1965.0019

    Article  ADS  Google Scholar 

  8. G. B. Whitham, Linear and Nonlinear Waves (Wiley Interscience, New York, 1974).

    MATH  Google Scholar 

  9. G. A. El and M. A. Hoefer, Phys. D (Amsterdam, Neth.) 333, 11 (2016). https://doi.org/10.1016/j.physd.2016.04.006

  10. A. V. Gurevich and A. L. Krylov, Sov. Phys. JETP 65, 944 (1987).

    Google Scholar 

  11. G. A. El, V. V. Geogjaev, A. V. Gurevich, and A. L. Krylov, Phys. D (Amsterdam, Neth.). 87, 186 (1995). https://doi.org/10.1016/0167-2789(95)00147-V

  12. G. Xu, M. Conforti, A. Kudlinski, A. Mussot, and S. Trillo, Phys. Rev. Lett. 118, 254101 (2017). https://doi.org/10.1103/PhysRevLett.118.254101

    Article  ADS  Google Scholar 

  13. V. E. Zakharov and A. V. Shabat, Sov. Phys. JETP 34, 62 (1971).

    ADS  Google Scholar 

  14. W. Wan, S. Jia, and J. W. Fleischer, Nat. Phys. 3, 46 (2007). https://doi.org/10.1038/nphys486

    Article  Google Scholar 

  15. G. A. El, Chaos 15, 037103 (2005). https://doi.org/10.1063/1.1947120

    Article  ADS  MathSciNet  Google Scholar 

  16. G. A. El, A. Gammal, E. G. Khamis, R. A. Kraenkel, and A. M. Kamchatnov, Phys. Rev. A 76, 053813 (2007). https://doi.org/10.1103/PhysRevA.76.053813

    Article  ADS  Google Scholar 

  17. X. An, T. R. Marchant, and N. F. Smyth, Phys. D (Amsterdam, Neth.). 342, 45 (2017). https://doi.org/10.1016/j.physd.2016.11.004

  18. A. M. Kamchatnov, Phys. Rev. E 99, 012203 (2019). https://doi.org/10.1103/PhysRevE.99.012203

    Article  ADS  MathSciNet  Google Scholar 

  19. S. K. Ivanov and A. M. Kamchatnov, Phys. Rev. A 96, 053844 (2017). https://doi.org/10.1103/PhysRevA.96.053844

    Article  ADS  Google Scholar 

  20. Y. S. Kivshar, Phys. Rev. A 42, 1757 (1990). doi 10.1103/PhysRevA.42.1757; Yu. S. Kivshar and B. A. Malomed, Opt. Lett. 18, 485 (1993).

    Article  ADS  Google Scholar 

  21. R. S. Johnson, J. Fluid Mech. 42, 49 (1970). https://doi.org/10.1017/S0022112070001064

    Article  ADS  MathSciNet  Google Scholar 

  22. A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 66, 490 (1987).

    Google Scholar 

  23. V. V. Avilov, I. M. Krichever, and S. P. Novikov, Sov. Phys. Dokl. 32, 564 (1987).

    ADS  Google Scholar 

  24. A. M. Kamchatnov, Phys. D (Amsterdam, Neth.) 333, 99 (2016). https://doi.org/10.1016/j.physd.2015.11.010

  25. A. M. Kamchatnov, Phys. D (Amsterdam, Neth.) 188, 247 (2004). https://doi.org/10.1016/j.physd.2003.07.008

  26. P.-É. Larré, N. Pavloff, and A. M. Kamchatnov, Phys. Rev. B 86, 165304 (2012). https://doi.org/10.1103/PhysRevB.86.165304

    Article  ADS  Google Scholar 

  27. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons. From Fibers to Photonic Crystals (Academic, Amsterdam, 2003).

    Google Scholar 

  28. A. M. Kamchatnov, Nonlinear Periodic Waves and Their Modulations: An Introductory Course (World Scientific, Singapore, 2000).

    Book  MATH  Google Scholar 

  29. G. A. El, R. H. J. Grimshaw, and N. F. Smyth, Phys. Fluids 18, 027104 (2006). https://doi.org/10.1063/1.2175152

    Article  ADS  MathSciNet  Google Scholar 

  30. E. M. Gromov and B. A. Malomed, in Generalized Models and Non-classical Approaches in Complex Materials 2, Vol. 90 of Advanced Structured Materials (Springer, Cham, 2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ivanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Shumai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, S.K., Kamchatnov, A.M. The Evolution of High-Intensity Light Pulses in a Nonlinear Medium Taking into Account the Raman Effect. Opt. Spectrosc. 127, 95–106 (2019). https://doi.org/10.1134/S0030400X19070105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19070105

Keywords:

Navigation