Skip to main content
Log in

Features of Calculation of the Equation of State, Composition, and Conductivity for a Plasma of Dense, Supercritical Metal Vapors—a Plasma Fluid

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The caloric and thermal equations of state, composition, and conductivity have been calculated for a supercritical aluminum plasma fluid. A previously proposed chemical plasma model called the “3+”-component one was used for the calculations. The model includes atoms, electrons, ions, and an electron jellium. The thermodynamic functions have been calculated for the first time within the “3+” model for a plasma fluid. The magnification and compensation of intercharge and interatomic interactions when calculating the equation of state and composition are analyzed. The introduction of the jellium leads to an increase in conductivity under compression, while the compensation of interactions when calculating the composition leads to a virtually ideal-gas behavior of the equation of state. Comparison with the data from physical and numerical experiments has confirmed our conclusions and demonstrated that the hypothesis about jellium, a new gas–plasma component, is constructive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, A. G. Khrapak, and I. T. Yakubov, Physics of Nonideal Plasma (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  2. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, and E. N. Tsiok, Phys. Usp. 55, 1061 (2012).

    Article  ADS  Google Scholar 

  3. A. W. DeSilva and H.-J. Kunze, Phys. Rev. E 49, 4448 (1994).

    Article  ADS  Google Scholar 

  4. A. W. DeSilva and J. D. Katsouros, Phys. Rev. E 57, 5945 (1998).

    Article  ADS  Google Scholar 

  5. A. W. DeSilva and A. D. Rakhel, Contrib. Plasma Phys. 45, 236 (2005).

    Article  ADS  Google Scholar 

  6. R. Redmer, Phys. Rev. E 59, 1073 (1999).

    Article  ADS  Google Scholar 

  7. E. M. Apfelbaum, Czech. J. Phys. 56, B618 (2006).

    Article  Google Scholar 

  8. Z. J. Fu, L.-J. Jia, J.-H. Xia, et al., Acta Phys. Sin. 65, 065201 (2016).

    Google Scholar 

  9. P. Renaudin, C. Blancard, J. Clerouin, G. Faussurier, P. Noiret, and V. Recoules, Phys. Rev. Lett. 91, 075002 (2003).

    Article  ADS  Google Scholar 

  10. J. Clerouin, P. Noiret, V. N. Korobenko, and A. D. Rakhel, Phys. Rev. B 78, 224203 (2008).

    Article  ADS  Google Scholar 

  11. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 121, 521 (2015).

    Article  ADS  Google Scholar 

  12. A. L. Khomkin and A. S. Shumikhin, High Temp. 50, 307 (2012).

    Article  Google Scholar 

  13. E. M. Apfelbaum, Phys. Plasmas 22, 092703 (2015).

    Article  ADS  Google Scholar 

  14. V. B. Bobrov, High Temp. 54, 447 (2016).

    Article  Google Scholar 

  15. W. Ebeling and W. Richert, Phys. Lett. A 108, 80 (1985).

    Article  ADS  Google Scholar 

  16. D. V. Minakov, P. R. Levashov, K. V. Khishchenko, and V. E. Fortov, J. Appl. Phys. 115, 223512 (2014).

    Article  ADS  Google Scholar 

  17. T. Sjostrom, S. Crockett, and S. Rudin, Phys. Rev. B 94, 144101 (2016).

    Article  ADS  Google Scholar 

  18. D. V. Knyazev and P. R. Levashov, Phys. Plasmas 21, 073302 (2014).

    Article  ADS  Google Scholar 

  19. Yu. V. Petrov, K. P. Migdal, N. A. Inogamov, and S. I. Anisimov, JETP Lett. 104, 431 (2016).

    Article  ADS  Google Scholar 

  20. A. A. Ovechkin, P. A. Loboda, and A. L. Falkov, High Energy Density Phys. 20, 38 (2016).

    Article  ADS  Google Scholar 

  21. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 124, 1001 (2017).

    Article  ADS  Google Scholar 

  22. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1983).

    Article  ADS  Google Scholar 

  23. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 118, 72 (2014).

    Article  ADS  Google Scholar 

  24. A. Banerjia and J. R. Smith, Phys. Rev. B 37, 6632 (1988).

    Article  ADS  Google Scholar 

  25. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 123, 891 (2016).

    Article  ADS  Google Scholar 

  26. A. L. Khomkin and A. S. Shumikhin, High Temp. 54, 796 (2016).

    Article  Google Scholar 

  27. I. A. Mulenko, A. L. Khomkin, and A. S. Shumikhin, High Temp. 42, 842 (2004).

    Article  Google Scholar 

  28. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).

    Article  ADS  Google Scholar 

  29. J. H. Rose, J. R. Smith, and J. Ferrante, Phys. Rev. B 28, 1835 (1983).

    Article  ADS  Google Scholar 

  30. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Khomkin.

Additional information

Original Russian Text © A.L. Khomkin, A.S. Shumikhin, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 6, pp. 1393–1403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomkin, A.L., Shumikhin, A.S. Features of Calculation of the Equation of State, Composition, and Conductivity for a Plasma of Dense, Supercritical Metal Vapors—a Plasma Fluid. J. Exp. Theor. Phys. 125, 1189–1198 (2017). https://doi.org/10.1134/S1063776117120135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117120135

Navigation