Skip to main content
Log in

Ab initio calculations of exciton effects in optical spectra of an α-B12 crystal

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dielectric functions and energy loss spectrum of electrons of a rhombohedral α-B12 crystal are studied both in the single-particle and many-particle approximations using Bethe–Salpeter equations. The opposite roles of different contributions to exciton effects are discussed. The anisotropy of dielectric functions is shown, which demonstrates their high sensitivity with respect to the three-dimensional packing of icosahedrons. The influence of the coherent mixing of electronic and exciton states on the redistribution of oscillator strengths is found. The position of the plasmon of valence electrons and the high-frequency permittivity are found to be consistent with experimental data. The correlation between the distribution of oscillator strengths and features of the density of electronic states is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  Google Scholar 

  2. S. Albrecht, L. Reining, R. del Sole, and G. Onida, Phys. Rev. Lett. 80, 4510 (1998).

    Article  ADS  Google Scholar 

  3. M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).

    Article  ADS  Google Scholar 

  4. L. X. Benedict, E. L. Shirley, and R. B. Bohn, Phys. Rev. Lett. 80, 4514 (1998).

    Article  ADS  Google Scholar 

  5. Y. Gillet, M. Giantomassi, and X. Gonze, Comp. Phys. Commun. 203, 83 (2016).

    Article  ADS  Google Scholar 

  6. S. Albrecht, G. Onida, and L. Reining, Phys. Rev. B 16, 10278 (1997).

    Article  ADS  Google Scholar 

  7. S. Albrecht, L. Reining, R. D. Sole, et al., Phys. Rev. Lett. 80, 4510 (1998).

    Article  ADS  Google Scholar 

  8. L. X. Benedict, E. L. Shirley, and R. B. Bohn, Phys. Rev. B 57, R9385 (1998).

    Article  ADS  Google Scholar 

  9. L. X. Benedict and E. L. Shirley, Phys. Rev. B 59, 5441 (1999).

    Article  ADS  Google Scholar 

  10. J. Furthmüller, P. H. Hahn, F. Fuchs, et al., Phys. Rev. B 72, 205106 (2005).

    Article  ADS  Google Scholar 

  11. C. E. P. Villegas, A. R. Rocha, and A. Marini, Phys. Rev. B 94, 134306 (2016).

    Article  ADS  Google Scholar 

  12. P. E. Trevisanutto, M. Holzmann, M. Coté, et al., Phys. Rev. B 81, 121405 (2010).

    Article  ADS  Google Scholar 

  13. P. H. Hahn, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 88, 016402 (2002).

    Article  ADS  Google Scholar 

  14. N. Alaal, V. Loganathan, N. Medheker, et al., J. Phys. D: Appl. Phys. 49, 105306 (2016).

    Article  ADS  Google Scholar 

  15. C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, et al., Phys. Rev. Lett. 95, 247402 (2005).

    Article  ADS  Google Scholar 

  16. L. E. Ramos, J. Paier, G. Kresse, et al., Phys. Rev. B 78, 195423 (2008).

    Article  ADS  Google Scholar 

  17. B. F. Decker and J. S. Kasper, Acta Crystallogr. 12, 503 (1959).

    Article  Google Scholar 

  18. S. Veprek, R. F. Zhang, and A. S. Argon, J. Super. Mater. 33, 409 (2011).

    Article  Google Scholar 

  19. R. J. Nelmes, J. S. Loveday, D. R. Allan, et al., Phys. Rev. B 47, 7668 (1993).

    Article  ADS  Google Scholar 

  20. K. Shirai, H. Dekura, and A. Masago, J. Phys.: Conf. Ser. 176, 012001 (2009).

    Google Scholar 

  21. F. H. Horn, J. Appl. Phys. 30, 1611 (1959).

    Article  ADS  Google Scholar 

  22. M. Terrauchi, Y. Kawamata, M. Tanaka, et al., Solid St. Chem. 133, 156 (1997).

    Article  ADS  Google Scholar 

  23. C. L. Beckel, M. Yousaf, M. Z. Fuka, et al., Phys. Rev. B 44, 2535 (1991).

    Article  ADS  Google Scholar 

  24. K. Shirai and S. Gonda, J. Phys. Chem. Sol. 57, 109 (1996).

    Article  ADS  Google Scholar 

  25. N. Vast, S. Baroni, G. Zerah, et al., Phys. Status Solidi B 198, 115 (1996).

    Article  ADS  Google Scholar 

  26. N. Vast, S. Baroni, and A. del Corso, Comput. Mater. Sci. 17, 127 (2000).

    Article  Google Scholar 

  27. N. Vast, S. Baroni, G. Zerah, et al., Phys. Rev. Lett. 78, 693 (1997).

    Article  ADS  Google Scholar 

  28. M. J. van Setten, M. A. Vijttewaal, G. A. de Wijs, et al., J. Am. Chem. Soc. 129, 2458 (2007).

    Article  Google Scholar 

  29. B. N. Mavrin and V. V. Reshetnyak, Opt. Spectrosc. 123 (2017, in press).

  30. I. Boustani and A. Quandt, Comput. Mater. Sci. 11, 132 (1998).

    Article  Google Scholar 

  31. U. Häussermann, S. I. Simak, R. Ahuya, et al., Phys. Rev. Lett. 90, 065701 (2003).

    Article  ADS  Google Scholar 

  32. F. Gao, X. Qin, L. Wang, et al., J. Phys. Chem. B 109, 14892 (2005).

    Article  Google Scholar 

  33. K. Shirai, H. Dekura, and A. Yanase, J. Phys. Soc. Jpn. 78, 084714 (2009).

    Article  ADS  Google Scholar 

  34. S. Aydin and M. Şimşek, Solid St. Sci. 14, 1636 (2012).

    Article  ADS  Google Scholar 

  35. J. Heid, G. E. Scusseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).

    Article  ADS  Google Scholar 

  36. M. Ferrero, M. Réat, M. Kirtman, and R. Doveci, J. Chem. Phys. 129, 244110 (2008).

    Article  ADS  Google Scholar 

  37. S. Sharma and C. Ambrosch-Draxl, Phys. Scripta T 109, 128 (2004).

    Article  ADS  Google Scholar 

  38. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  39. D. R. Hamann, Phys. Rev. B 88, 085117 (2013).

    Article  ADS  Google Scholar 

  40. M. Schlipf and F. Gygi, Comp. Phys. Commun. 196, 36 (2015).

    Article  ADS  Google Scholar 

  41. www.abinit.org.

  42. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Gruning, A. Marini, and X. Gonze, Nano Lett. 9, 2820 (2009).

    Article  ADS  Google Scholar 

  44. R. Haydock, Comput. Phys. Commun. 20, 11 (1980).

    Article  ADS  Google Scholar 

  45. F. Aryasetiawan and O. Gunarson, Rep. Progr. Phys. 61, 237 (1998).

    Article  ADS  Google Scholar 

  46. M. S. Hybertsen and S. G. Louie, Phys. Rev. B 35, 5585 (1987).

    Article  ADS  Google Scholar 

  47. M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).

    Article  ADS  Google Scholar 

  48. N.-P. Wang, M. Rohlfing, P. Kruger, et al., Phys. Rev. B 67, 115111 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Mavrin.

Additional information

Original Russian Text © B.N. Mavrin, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 3, pp. 581–588.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavrin, B.N. Ab initio calculations of exciton effects in optical spectra of an α-B12 crystal. J. Exp. Theor. Phys. 125, 495–501 (2017). https://doi.org/10.1134/S1063776117080076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117080076

Navigation