Skip to main content
Log in

Dispersion and density of states of phonons and electrons in an α-B12 crystal determined from first principles

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using the DFT method, we study the phonon properties of an α-B12 rhombohedral crystal in the basis set of plane waves and its electronic structure in the localized basis set of Gaussians. It follows from the phonon dispersion that the crystal possesses a dynamical stability. The effective Born charges, the oscillator strengths, the transverse–longitudinal splitting, and the dielectric functions of dipole modes are calculated. We show that charge transfer from polar to equatorial atoms takes place in a В12 icosahedron, while В–В bonds have predominantly a covalent character. In the density of states of acoustic modes, we reveal a structure that can manifest itself in the spectra of disordered boron compounds. From the dispersion of electronic bands, the occurrence of an indirect energy gap follows. The overlap of partial densities implies the hybridization of s and p electronic states in boron atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Veprek, R. F. Zhang, and A. S. Argon, J. Superhard Mater. 33, 409 (2011).

    Article  Google Scholar 

  2. R. J. Nelmes, J. S. Loveday, D. R. Allan, J. M. Besson, G. Gamel, P. Grima, and S. Hull, Phys. Rev. B 47, 7668 (1993).

    Article  ADS  Google Scholar 

  3. K. Shirai, H. Dekura, and A. Masago, J. Phys.: Conf. Ser. 176, 012001 (2009).

    Google Scholar 

  4. M. I. Eremets, V. V. Struzhkin, H. Mao, and R. J. Hemley, Science 293, 272 (2001).

    Article  ADS  Google Scholar 

  5. F. H. Horn, J. Appl. Phys. 30, 1611 (1959).

    Article  ADS  Google Scholar 

  6. M. Terrauchi, Y. Kawamata, M. Tanaka, M. Takeda, and K. J. Kamura, Solid State Chem. 133, 156 (1997).

    Article  ADS  Google Scholar 

  7. B. F. Decker and J. S. Kasper, Acta Crystallogr. 12, 503 (1959).

    Article  Google Scholar 

  8. C. L. Beckel, M. Yousaf, M. Z. Fuka, S. Y. Raya, and N. Li, Phys. Rev. B 44, 2535 (1991).

    Article  ADS  Google Scholar 

  9. K. Shirai and S. Gonda, J. Phys. Chem. Solids 57, 109 (1996).

    Article  ADS  Google Scholar 

  10. N. Vast, S. Baroni, G. Zerah, J. M. Besson, A. Polian, M. Grimsditch, and J. C. Chervin, Phys. Status Solidi B 198, 115 (1996).

    Article  ADS  Google Scholar 

  11. N. Vast, S. Baroni, and A. del Corso, Comput. Mater. Sci. 17, 127 (2000).

    Article  Google Scholar 

  12. N. Vast, S. Baroni, G. Zerah, J. M. Besson, A. Polian, M. Grimsditch, and J. C. Chervin, Phys. Rev. Lett. 78, 693 (1997).

    Article  ADS  Google Scholar 

  13. M. J. van Setten, M. A. Vijttewaal, G. A. de Wijs, and R. A. de Grood, J. Am. Chem. Soc. 129, 2458 (2007).

    Article  Google Scholar 

  14. I. Boustani and A. Quandt, Comput. Mater. Sci. 11, 132 (1998).

    Article  Google Scholar 

  15. U. Hässermann, S. I. Simak, R. Ahuya, and B. Johanson, Phys. Rev. Lett. 90, 065701 (2003).

    Article  ADS  Google Scholar 

  16. F. Gao, X. Qin, L. Wang, Y. He, G. Sun, L. Hou, and W. Wang, J. Phys. Chem. B 109, 14892 (2005).

    Article  Google Scholar 

  17. K. Shirai, H. Dekura, and A. Yanase, J. Phys. Soc. Jpn. 78, 084714 (2009).

    Article  ADS  Google Scholar 

  18. S. Aydin and M. Simsek, Solid State Sci. 14, 1636 (2012).

    Article  ADS  Google Scholar 

  19. J. Heid, G. E. Scusseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).

    Article  ADS  Google Scholar 

  20. D. R. Tallant, T. L. Aselage, A. N. Campbell, and D. Emin, Phys. Rev. B 40, 5649 (1989).

    Article  ADS  Google Scholar 

  21. A. Polian, J. C. Chervin, P. Munsch, and M. Gauthier, J. Phys.: Conf. Ser. 121, 042017 (2008).

    Google Scholar 

  22. W. Richter, W. Weber, and K. Ploog, J. Less-Common Met. 47, 85 (1976).

    Article  ADS  Google Scholar 

  23. O. A. Golikova, J. A. Drabkin, V. K. Zaitsev, M. M. Kazanin, D. N. Mirlin, J. V. Nelson, E. Tkalenko, and T. Chomidov, in Proceedings of the International Symposium on Boron, Tbilisi, 1972, p. 42.

    Google Scholar 

  24. H. Werheit, U. Kuhlmann, N. E. Solov’ev, G. P. Tsiskarishvili, and G. Tsagareishvili, AIP Conf. Proc. 231, 350 (1991).

  25. www.abinit.org.

  26. Crystal14 User’s Manual (Univ. of Torino, 2014).

  27. K. E. Garriety, J. W. Bennett, K. M. Rabe, and D. Vanderbuilt, www.physics.rutgers.edu.

  28. M. F. Peintinger, D. V. Oliveira, and T. Bredow, J. Comput. Chem. 34, 451 (2013).

    Article  Google Scholar 

  29. M. Ferrero, M. Rérat, M. Kirtman, and R. Doveci, J. Chem. Phys. 129, 244110 (2008).

    Article  ADS  Google Scholar 

  30. P. Giannozi, S. de Gironcoli, P. Pavonne, and S. Baroni, Phys. Rev. B 43, 7231 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Mavrin.

Additional information

Original Russian Text © B.N. Mavrin, V.V. Reshetnyak, 2017, published in Optika i Spektroskopiya, 2017, Vol. 123, No. 1, pp. 80–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavrin, B.N., Reshetnyak, V.V. Dispersion and density of states of phonons and electrons in an α-B12 crystal determined from first principles. Opt. Spectrosc. 123, 70–75 (2017). https://doi.org/10.1134/S0030400X17070165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X17070165

Navigation