Skip to main content
Log in

Ginzburg–Landau expansion in strongly disordered attractive Anderson–Hubbard model

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied disordering effects on the coefficients of Ginzburg–Landau expansion in powers of superconducting order parameter in the attractive Anderson–Hubbard model within the generalized DMFT+Σ approximation. We consider the wide region of attractive potentials U from the weak coupling region, where superconductivity is described by BCS model, to the strong coupling region, where the superconducting transition is related with Bose–Einstein condensation (ВЕС) of compact Cooper pairs formed at temperatures essentially larger than the temperature of superconducting transition, and a wide range of disorder—from weak to strong, where the system is in the vicinity of Anderson transition. In the case of semielliptic bare density of states, disorder’s influence upon the coefficients A and В of the square and the fourth power of the order parameter is universal for any value of electron correlation and is related only to the general disorder widening of the bare band (generalized Anderson theorem). Such universality is absent for the gradient term expansion coefficient C. In the usual theory of “dirty” superconductors, the С coefficient drops with the growth of disorder. In the limit of strong disorder in BCS limit, the coefficient С is very sensitive to the effects of Anderson localization, which lead to its further drop with disorder growth up to the region of the Anderson insulator. In the region of BCS–ВЕС crossover and in ВЕС limit, the coefficient С and all related physical properties are weakly dependent on disorder. In particular, this leads to relatively weak disorder dependence of both penetration depth and coherence lengths, as well as of related slope of the upper critical magnetic field at superconducting transition, in the region of very strong coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 9, 220 (1959).

    Google Scholar 

  2. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 9, 1090 (1959).

    Google Scholar 

  3. L. P. Gor’kov, Sov. Phys. JETP 36, 1364 (1959).

    MathSciNet  Google Scholar 

  4. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 12, 1243 (1961).

    Google Scholar 

  5. P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).

    Article  ADS  Google Scholar 

  6. P. G. de Gennes, Superconductivity of Metals and Alloys (W. A. Benjamin, New York, 1966).

    MATH  Google Scholar 

  7. L. N. Bulaevskii and M. V. Sadovskii, JETP Lett. 39, 640 (1984).

    ADS  Google Scholar 

  8. L. N. Bulaevskii and M. V. Sadovskii, J. Low. Temp. Phys. 59, 89 (1985).

    Article  ADS  Google Scholar 

  9. M. V. Sadovskii, Phys. Rep. 282, 226 (1997); arXiv:cond-mat/9308018

    Article  ADS  Google Scholar 

  10. M. V. Sadovskii, Superconductivity and Localization (World Scientific, Singapore, 2000).

    Book  MATH  Google Scholar 

  11. P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).

    Article  ADS  Google Scholar 

  12. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).

    Article  ADS  Google Scholar 

  13. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  Google Scholar 

  14. D. Vollhardt, in Lectures on the Physics of Strongly Correlated Systems XIV, Ed. by A. Avella and F. Mancini, AIP Conf. Proc. 1297, 339 (2010); arXiv: 1004.5069.

  15. N. A. Kuleeva, E. Z. Kuchinskii, and M. V. Sadovskii, J. Exp. Theor. Phys. 119, 264 (2014); arXiv: 1401.2295.

    Article  Google Scholar 

  16. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 82, 198 (2005); arXiv: cond-mat/0506215.

    Article  ADS  Google Scholar 

  17. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Prushke, and V. I. Anisimov, Phys. Rev. B 72, 155105 (2005); arXiv: cond-mat/0508585.

    Article  ADS  Google Scholar 

  18. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Low Temp. Phys. 32, 398 (2006); arXiv: cond-mat/0510376.

    Article  ADS  Google Scholar 

  19. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Usp. 53, 325 (2012); arXiv:1109.2305.

    Article  ADS  Google Scholar 

  20. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, J. Exp. Theor. Phys. 106, 581 (2008); arXiv: 0706.2618.

    Article  ADS  Google Scholar 

  21. E. Z. Kuchinskii and M. V. Sadovskii, J. Exp. Theor. Phys. 122, 509 (2016); arXiv:1507.07654.

    Article  ADS  Google Scholar 

  22. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B 75, 115102 (2007); arXiv:cond-mat/0609404.

    Article  ADS  Google Scholar 

  23. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, JETP Lett. 100, 192 (2014); arXiv: 1406.5603.

    Article  Google Scholar 

  24. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, J. Exp. Theor. Phys. 120, 1055 (2015); arXiv:1411.1547.

    Article  ADS  Google Scholar 

  25. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, J. Exp. Theor. Phys. 122, 375 (2016); arXiv:1507.07649.

    Article  ADS  Google Scholar 

  26. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, J. Low Temp. Phys. 43, 17 (2017); arXiv: 1606.05125.

    Article  Google Scholar 

  27. L. P. Gor’kov and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Pergamon Press, Oxford, 1965).

    Google Scholar 

  28. M. V. Sadovskii, Diagrammatics (World Scientific, Singapore, 2006).

    Book  MATH  Google Scholar 

  29. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 60, 395 (2008)

    Article  ADS  Google Scholar 

  30. D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982).

    Article  ADS  Google Scholar 

  31. P. Wölfle and D. Vollhardt, in Anderson Localization, Ed. by Y. Nagaoka and H. Fukuyama, Springer Ser. Solid State Sci. 39, 26 (1982).

    Article  Google Scholar 

  32. A. V. Myasnikov and M. V. Sadovskii, Sov. Phys. Solid State 24, 2033 (1982)

    Google Scholar 

  33. E. A. Kotov and M. V. Sadovskii, Zs. Phys. B 51, 17 (1983).

    Article  ADS  Google Scholar 

  34. M. V. Sadovskii, in Soviet Scientific Reviews–Physics Reviews, Ed. I. M. Khalatnikov (Harwood Academic, New York, 1986), vol. 7, p. 1.

  35. D. Vollhardt and P. Wölfle, in Electronic Phase Transitions, Ed. by W. Hanke and Yu. V. Kopaev (North–Holland, Amsterdam, 1992), vol. 32, p. 1.

  36. L. N. Bulaevskii and M. V. Sadovskii, JETP Lett. 43, 99 (1986).

    ADS  Google Scholar 

  37. L. N. Bulaevskii, S. V. Panyukov, and M. V. Sadovskii, Sov. Phys. JETP 65, 380 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Z. Kuchinskii.

Additional information

Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 1, pp. 133–146.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchinskii, E.Z., Kuleeva, N.A. & Sadovskii, M.V. Ginzburg–Landau expansion in strongly disordered attractive Anderson–Hubbard model. J. Exp. Theor. Phys. 125, 111–122 (2017). https://doi.org/10.1134/S1063776117060139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117060139

Navigation